Loading [MathJax]/jax/output/HTML-CSS/jax.js
Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 08-10-2020 17:55:40

TOUFAU
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 105

Comptabilité de pavvés

Bonjour,

On a un grand cube constitué de n petits cubes de côté.

Combien de pavés différents peut-on former ? (pavé = Parallélépipède constitué de 1 ou plusieurs petits cubes)

Et si on a un grand cube de 2n+1 petits cubes de côté, mais sans le petit cube central cette fois-ci, combien de pavés différents peut-on former ?

Pas hyper fun, mais comme le site est bien calme en ce moment…

  • |
  • Répondre

#0 Pub

 #2 - 09-10-2020 23:51:25

Jackv
Elite de Prise2Tete
Enigmes résolues : 34
Messages : 3554
Lieu: 94110

Comptabilitté de pavés

combien de pavés différents peut-on former ?

Est-ce que c'est bon si je te dis : beaucoup ?

c'est juste pour faire avancer le shmilibilibilik lol
(et te donner l'occasion d'écrire un nouveau post wink )

 #3 - 10-10-2020 12:28:57

TOUFAU
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 105

comptabiluté de pavés

Jackv, c'est bon oui :-)
peut être juste un petit manque de précision (si j'avais à redire)

 #4 - 11-10-2020 11:11:05

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 319

comptabikité de pavés

salut ;

pour la première question , je pense à ça :

p est le nombre de parallélépipèdes différents .
Alors :
1) si n = 2  :  p = 2 + 2 = 4 .
2) si n > 2
p=n+n.(n1)+C(3n)=n2+C(3n)
n=3  : p = 9 + 1 = 10
n=4  : p = 16 + 4 = 20
n=5  : p = 25 + 10 = 35
n=6  : p = 36 + 20 = 56  ... etc ..

pas vu encore pour la seconde ; à plus ...

 #5 - 11-10-2020 13:28:18

TOUFAU
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 105

comptabilité fe pavés

Bonjour UneCoudée.

Je pense en lisant ta réponse que mon énoncé était interprétable (donc mal formulé !)
Dans ton calcul, tu considères de ce que je comprends que deux pavés distincts mais de même forme ne comptent que pour 1 pavé.
Par exemple si n=2, tu comptes 1 pavé de 1 et non 8. Ce qui était le sens de mon problème en fait !.
Donc tu trouves 4 pavés distincts pour n=2 (pavés ‘1’, ‘2*1’, ‘2*2’ et ‘2*2*2’) et non 27 (8 pavés de ‘1’ + 12 pavés ‘2*1'+…).

Selon ta compréhension du problème, ton résultat est juste pour le cube plein

Spoiler : [Afficher le message] La formule générale selon ton interprétation du pb est je pense n(n+1)(n+2)/6

Mais mon problème était bien de compter tous les pavés… 😊 donc 27 pour n=2

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Si il y a 88 pommes et que vous en prenez 44, combien vous en avez ?

Sujets similaires

Sujet Date Forum
P2T
Sous les pavés... par titoufred
16-03-2014 Enigmes Mathématiques
04-09-2010 Enigmes Mathématiques
14-03-2022 Enigmes Mathématiques
P2T
Passera, passera pas ? par Alexein41
24-01-2011 Enigmes Mathématiques
P2T
P2Tower defense 2 par Clydevil
30-08-2011 Enigmes Mathématiques
24-06-2011 Enigmes Mathématiques
P2T
Gâteau 132 par Vasimolo
23-05-2017 Enigmes Mathématiques
P2T
Equilibrio1 par Promath-
10-10-2010 Enigmes Mathématiques
P2T
Cadeaux par minifat
29-08-2007 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete