Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 23-05-2011 18:55:08

Yanyan
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 509
Lieu: Lille si j'y suis

remarque sur les logarithmrs et question

J'ai remarqué que si on définit [latex]\phi(p_1^{a_1} p_2^{a_2} ... p_k^{a_k})=a_1p_1+ a_2p_2+...+a_kp_k[/latex] avec les [latex]a_i[/latex] dans [latex]Z[/latex] on obtenait une fonction sur [latex]Q[/latex] bien définie, qui vérifiait les formules du logarithme.
On voit vite que cette fonction n'est pas croissante d'où la question suivante existe-t-il un polynôme P tel que [latex]\phi_P(p_1^{a_1} p_2^{a_2} ... p_k^{a_k})=a_1P(p_1)+ a_2P(p_2)+...+a_kP(p_k)[/latex] soit croissante?

Les [latex]p_i[/latex] étant les premiers.

(Je n'ai pas osé poster ça dans les énigmes maths.)



Annonces sponsorisées :

Un mathématicien complet est topologiquement fermé!
  • |
  • Répondre

#0 Pub

 #2 - 23-05-2011 22:04:00

irmo322
Professionnel de Prise2Tete
Enigmes résolues : 36
Messages : 198

Remarque sur les logarithmes et qusetion

Les [latex]\phi_{P}[/latex] sont plutôt définis seulement sur [latex]\mathbb{Q}^{*}_{+}[/latex].

Soit P un polynôme tel que [latex]\phi_{P}[/latex] est croissante.

Soit p premier.

Soit [latex]n\in\mathbb{N}[/latex] tel que [latex]p\leq 2^{n}[/latex].
Par croissance, on a: [latex]\phi_{P}(p)\leq \phi_{P}(2^{n})[/latex]
Donc [latex]P(p)\leq n.P(2)[/latex].
On peut choisir [latex]n=E(\frac{ln(p)}{ln(2)})+1[/latex].   (où [latex]E(x)[/latex] est la partie entière de [latex]x[/latex]).

On a alors: [latex]P(p)\leq \big(E(\frac{ln(p)}{ln(2)})+1\big).P(2)[/latex].

En regardant le comportement à l'infini, on en déduit que P est constant (P ne peut être négatif à l'infini, sinon ça contredit la croissance de [latex]\phi_{P}[/latex]).

Le seul polynôme constant qui rend [latex]\phi_{P}[/latex] croissante est le polynôme nul.

 #3 - 24-05-2011 07:09:09

Yanyan
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 509
Lieu: Lille si j'y suis

Remarque sur les lograithmes et question

Je suis en tous points d'accord avec toi irmo322.
On voit donc que le logarithme classique est vraiment naturel...


Un mathématicien complet est topologiquement fermé!

 #4 - 02-06-2011 23:21:37

Yanyan
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 509
Lieu: Lille si j'y suis

remarque sur les lofarithmes et question

J'ai vu quelque part qu'une fonction croissante ou continue qui vérifiait
[TeX]f(ab)=f(a)+f(b)[/TeX]
était une fonction logarithme.


Un mathématicien complet est topologiquement fermé!

 #5 - 03-06-2011 01:31:29

SHTF47
Imprnnçbl de Prs2Tt
Enigmes résolues : 39
Messages : 1629
Lieu: Autre nom du colin

remarque sur les lofarithmes et question

Une très très connue mais bon ça fait plaisir quand même...

Cosinus et Logarithme sont au restaurant. Qui c'est qui paie ???
Spoiler : [Afficher le message] Cosinus, car Logarithme ne paie rien... lol


La musique est une mathématique sonore, la mathématique une musique silencieuse. [Edouard HERRIOT]

 #6 - 03-06-2011 02:50:48

irmo322
Professionnel de Prise2Tete
Enigmes résolues : 36
Messages : 198

Remarque sur les logrithmes et question

Yanyan a écrit:

J'ai vu quelque part qu'une fonction croissante ou continue qui vérifiait
[TeX]f(ab)=f(a)+f(b)[/TeX]
était une fonction logarithme.

Tout à fait.

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Tim, Tam et ?

Sujets similaires

Sujet Date Forum
P2T
Simple question par Autleaf
24-02-2011 Blabla
24-12-2013 Blabla
10-10-2010 Blabla
P2T
12-07-2016 Blabla
P2T
Cookline par Promath-
29-09-2011 Blabla
20-06-2008 Blabla
04-06-2008 Blabla
P2T
Merci ! par LY1955
22-04-2009 Blabla
P2T
Bye Gary... par daftpunk
07-02-2011 Blabla

Mots clés des moteurs de recherche

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete