Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 16-05-2012 20:11:36

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

intégratipn et fonctions réciproques

Bonjour à tous, je me suis rendu compte qu'il était très difficile d'obtenir la fonction réciproque d'une fonction quelconque. Notamment pour les polynômes.

Aussi ai-je réfléchis à une méthode en travaillant sur les calculs d'aires entre la courbe et l'axe Ox et entre la courbe et l'axe Oy.

En prenant f(x)=x je vous rassure le résultat était trivial.
Je me suis alors empressé d'essayer avec f(x)=x^2 (mon but était d'arriver à x^(1/2) )

Voici d'abord mon raisonnement dans le cas général :
http://img4.hostingpics.net/pics/674552exemple.png
En rouge :  [latex]A=\int_0^a f(x) dx[/latex]
En vert : [latex]B=\int_0^{f(a)} f^{-1}(x) dx[/latex] (la fonction réciproque)

De plus [latex]A+B=a*f(a)[/latex]

On peut donc écrire trivialement : [latex]\int_0^{f(a)} f^{-1}(x) dx=a*f(a)-\int_0^a f(x) dx[/latex]

Pour trouver [latex]f^{-1}(x)[/latex] il suffira de dériver la primitive.


Premier problème :
Je n'arrive pas à définir toutes les variables et constante pour que mon résultat soit bien une primitive et non pas une simple constante.

Deuxième en essayant avec x² :
J'obtiens : [latex]\int_0^{f(a)} f^{-1}(x) dx=\frac{2a^3}{3}[/latex]

En posant maintenant "a" est une variable comment retrouver la fonction réciproque de x² ? Car f(a)=a^2 et comme on cherche la fonction réciproque x² on ne peut pas en revenir à [latex]\int_0^{a} f^{-1}(x) dx=\frac{2a^{3/2}}{3}[/latex] qui est bien une primitive de la fonction racine carré.

Merci d'avance pour vos réponses smile
Shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
  • |
  • Répondre

#0 Pub

 #2 - 17-05-2012 11:20:47

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3802

intégration et fonctions réviproques

Pour une fonction réciproque, le plus simple que j'ai trouvé est de tourner le graphique de sa courbe représentative de 90 degrés...Méthode que j'emploie aussi volontiers pour trouver le devenir de la suite correspondante...

 #3 - 17-05-2012 11:56:20

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Intégratio net fonctions réciproques

Je sais qu'on peut le faire selon la droite d'équation y=x

Mais moi je ne cherche pas à savoir à quoi elle ressemble mais quelle est son équation. Si je cherche la fonction réciproque de [latex]\sum_{i=1}^5 a_i*sin(x-\frac{\pi}{3})^{2i+3}[/latex] je fais quoi? ^^

Au départ je pensais que ma méthode serait très pratique sauf que quand on essaye... donc si il y avait un courageux capable de m'aider je lui en serait très reconnaissant big_smile

Shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #4 - 17-05-2012 12:05:04

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3802

Intégration et fonctions réciproquse

Je n'ai pas de réponse mais ta méthode est pleine d'astuce. Maintenant, la résolution des primitives n'est pas toujours aisée, loin s'en faut...

 #5 - 17-05-2012 13:01:06

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Intégraiton et fonctions réciproques

@Shadock

Quelle est la dérivée de [latex]g(x)=\int_0^{f(x)}f^{-1}(t)dt[/latex] ?

Vasimolo

 #6 - 17-05-2012 15:29:03

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Intégraiton et fonctions réciproques

[TeX]\int_0^{f(x)}f^{-1}(t)dt=F^{-1}(f(x))-F^{-1}(0)[/TeX]
En réalité je n'en sais rien j'ai regardé la formule pour calculer la dérivé d'un fonction réciproque. Mais là avec la primitive tout ça...

Surtout que ma fonction de départ s'annule sur son ensemble de définition. Alors je ne sais pas comment faire yikes

Je pense que je complique les choses mais d'après cette méthode Bijection réciproque :
[TeX]g'(x)=\frac{1}{F'(x)\circ F^{-1}(x)}\circ f(x)-f(0)[/TeX]


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #7 - 17-05-2012 16:27:49

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

intégration et foncrions réciproques

Le problème est que la borne supérieure de l'intégrale dépend de [latex]x[/latex] mais n'est pas [latex]x[/latex] smile

Si tu notes [latex]h(x)=\int_0^xf^{-1}(t)dt[/latex] alors on a bien  [latex]h'(x)=f^{-1}(x)[/latex] .

Si [latex]g(x)=\int_0^{f(x)}f^{-1}(t)dt=h\circ f(x)[/latex] alors [latex]g'(x)=h'\circ f(x).f'(x)=x.f'(x)[/latex]

Si tu prends [latex]f(x)=x[/latex] , pas de problème [latex]g'(x)=x.1=x[/latex] mais pour [latex]f(x)=x^2[/latex] , [latex]g'(x)=2x^2\neq x.[/latex]

Vasimolo

 #8 - 17-05-2012 18:27:12

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Intégration et fontcions réciproques

Donc je ne peux pas utiliser cette méthode c'est ça ?

Je n'ai pas trop compris ton dernier exemple le fait que ça soit différent de x qu'est-ce que ça prouve ?


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #9 - 17-05-2012 23:42:49

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Intégration et fonctons réciproques

En fait je ne vois pas trop où tu veux en venir et il me semble qu'il y a des problèmes dans tes formules :

[latex]\int_0^{f(x)}f^{-1}(t)dt=F^{-1}(f(x))-F^{-1}(0)[/latex]

Si [latex]F^{-1}[/latex] désigne une primitive de [latex]f^{-1}[/latex] , c'est faux !

Si [latex]F[/latex] est la primitive de [latex]f[/latex] qui s'annule en [latex]0[/latex] , il me semble que :
[TeX]\int_0^{f(x)}f^{-1}(t)dt=xf(x)-F(x)[/TeX]
Ce qui ne permet pas d'obtenir une primitive de [latex]f^{-1}[/latex] mais je ne suis pas sûr d'avoir vraiment compris ce que tu cherches  smile

Vasimolo

 #10 - 18-05-2012 00:02:38

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Intégration et fonctions réciprouqes

Alors en prenant mon cours :
[TeX]\int_a^b f(x) dx= F(b)-F(a)[/TeX]
Donc si je pose [latex]f(x)=g^{-1}(x)[/latex] alors [latex]\int_a^b f(x) dx=G^{-1}(b)-G^{-1}(a)[/latex]

Ce que je cherche c'est l'équation de la fonction réciproque de la fonction que je connais. Tout est écrit dans mon premier post smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #11 - 18-05-2012 00:16:15

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Intégration et foncttions réciproques

Le problème est qu'une des bornes dépend de [latex]f[/latex] qui figure aussi dans l'intégrale , il y a donc une fonction composée qui traîne quelque part .

C'est ce que j'ai voulu dire dans mes précédentes interventions smile

Vasimolo

 #12 - 18-05-2012 09:06:50

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

intégration ey fonctions réciproques

Donc il faut que je trouve une autre méthode pour arriver à bout de cette technique ?
Je vais en discuter avec mon prof et je te tiens au courant. smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #13 - 19-05-2012 11:19:45

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

intégration et fonctions eéciproques

Mon prof m'a dit que c'était une très bonne idée mais inutilisable. Le mieux c'est les séries...donc j'abandonne cette petite recherche parce que les séries comment dire...tongue


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #14 - 19-05-2012 12:17:22

Klimrod
Elite de Prise2Tete
Enigmes résolues : 40
Messages : 4050
Lieu: hébesphénorotonde triangulaire

Intégraation et fonctions réciproques

Bah... Une intégrale n'est-elle pas la limite d'une série ? N'est-ce pas ce que disait Riemann ?


J'ai tant besoin de temps pour buller qu'il n'en reste plus assez pour bosser. Qui vit sans folie n'est pas si sage qu'il croit.

 #15 - 20-05-2012 00:48:15

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

intéfration et fonctions réciproques

Oui mais bon d'abord je suis en Terminale OK! tongue et deuxièmement les maths ne font pas partis de mon onanisme intellectuel. Donc même si je m'interesse à çà je ne suis pas prêt de devenir quelqu'un qui de la finesse je suis beaucoup trop bourrin pour ce genre de chose.

Quoiqu'il en soit j'aimerai bien arrivé au bout de ma recherche donc je prends tout ce que l'on me dit c'est tout benef pour moi big_smile

Shadock  smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #16 - 20-05-2012 10:49:16

perceval
Chevalier de P2T
Enigmes résolues : 48
Messages : 724
Lieu: 37

Intégration et fonctions réciproque

shadock a écrit:

Donc il faut que je trouve une autre méthode pour arriver à bout de cette technique ?
Je vais en discuter avec mon prof et je te tiens au courant. smile

shadock a écrit:

Mon prof m'a dit que c'était une très bonne idée mais inutilisable. Le mieux c'est les séries...donc j'abandonne cette petite recherche parce que les séries comment dire...tongue

Quel beau métier professeur !  Spoiler : [Afficher le message] c'est une contrepétrie


When i was a child i was a jedi

 #17 - 20-05-2012 13:17:48

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Intégration et fonctions réicproques

Une très bonne, d'ailleurs !


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #18 - 20-05-2012 16:55:36

langelotdulac
Ange de Prise2Tete
Enigmes résolues : 49
Messages : 2963
Lieu: Paradis

Intégration et onctions réciproques

Un peu éculée .... Spoiler : [Afficher le message] moins fine, mais faite maison tongue (ceci expliquant cela ^^'  Encore une ! lol))


Tu es largement assez dingo pour qu'un Minito te semble cohérent \o/ !

 #19 - 21-05-2012 15:37:44

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1106
Lieu: Jacou

Intégraton et fonctions réciproques

[TeX]F^{-1}[/latex] n'est PAS une primitive de [latex]f^{-1}[/latex] (dans le cas général) lorsque F est une primitve de f.
La formule générale est:
[latex](f^{-1})'=\dfrac1{f'of^{-1}}[/TeX]
Ton égalité tourne en rond. En effet, en posant G une primitive de [latex]f^{-1}[/latex] et F une primitive de f, en en supposant que toutes les égalités ci-dessous sont valides et ont un sens, ton égalité:
[TeX]\int_{0}^{f(a)}f^{-1}(t)dt=a.f(a)-\int_0^af(t)dt[/TeX]
s'écrit:
G(f(a))-G(0)=a.f(a)-(F(a)-F(0))

En la dérivant par rapport à 'a' (et encore une fois en supposant que tout a un sens mathématiquement parlant), on obtient:
[TeX]G'(f(a)).f'(a)=f(a)+a.f'(a)-F'(a)[/TeX]
Puisque [latex]G'=f^{-1}[/latex] et [latex]F'=f[/latex], on a:
[TeX]f^{-1}(f(a)).f'(a)=f(a)+a.f'(a)-f(a)[/TeX]
Soit: [latex][f^{-1}(f(a))-a].f'(a)=0[/latex]

Et toujours si c'est valide (f'(a) différent de 0):

[latex]f^{-1}(f(a))=a[/latex].

Magnifique non? smile

Je ne vois pas tellement de façon d'exprimer la réciproque d'une fonction en passant par son intégrale de façon générale...

 #20 - 22-05-2012 19:39:03

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Intégartion et fonctions réciproques

Ok bon et bien c'était une Fausse Bonne Idée ^^


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Riri, Fifi et ?

Sujets similaires

Sujet Date Forum
15-06-2012 Blabla
P2T
Epm par safino
25-07-2011 Blabla
10-03-2009 Blabla
P2T
énigme bien coriace ? par metatron971
31-08-2011 Blabla
P2T
Mort du forum ? par Vasimolo
24-06-2017 Blabla
P2T
Bonne année ! par daftpunk
12-12-2010 Blabla
24-07-2008 Blabla
P2T
Bye Gary... par daftpunk
07-02-2011 Blabla
31-05-2014 Blabla

Mots clés des moteurs de recherche

Mot clé (occurences)
Fonction reciproque astuces (6) — Integration fonction reciproque (5) — Primitive fonction reciproque (5) — Primitive d une fonction reciproque (4) — Primitive de la fonction reciproque (4) — Integrale fonction reciproque (4) — Methode pour determiner fonction reciproque (3) — Integrale fonction reciproque pdf (3) — Fonction reciproque (3) — Integration de fonction reciproque (3) — Calcul de la reciproque d une fonction quelconque (2) — Fonction reciproque d une integrale (2) — Axe x et axe f(x) (2) — Integration des fonctions reciproques (2) — Fx = x^x (2) — L integrale d une fonction reciproque (2) — Integrale d une fonction reciproque (2) — L integrale de fonction reciproque (2) — Integrale de la fonction reciproque (2) — Integrale de l inverse d une fonction f-1 (2) — Fonction reciproque et integral (1) — En mathematique la relation de l integrale d une fonction et sa reciproque (1) — Integration du fonction reciproque (1) — Integral fonction reciproque (1) — Calcul d aire de la fonction reciproque (1) — Integrale de l inverse d une fonction (1) — Calcul d aire avec une bijection reciproque (1) — Integral des fonctions reciproques (1) — Determiner la reciproque d une integrale (1) — Fonction receproquz (1) — Integration par fonction reciproque (1) — Integrale fonction et de sa bijection (1) — Fonction reciproque formule generale (1) — Fonction reciproque d une fonction quelconque (1) — Integration par les fonctions reciproques (1) — Derivee de la fonction reciproque (1) — Latex integrale grande barre apres la primitive (1) — (1) — Integral de la fonction reciproque (1) — Reciproque d une fonction quelconque (1) — Comment determiner le domaine d arrivee et de depart d une fonction reciproque (1) — Fonction integrale et sa reciproque (1) — Les fonctions reciproques et la relations de leurs primitives (1) — Integration de fonction inverse (1) — Comment calculer l aire a partir de la courbe de la fonction reciproque (1) — Primitive de la fonction r?ciproque (1) — Relation entre l integrale d une fonction et sa r?ciproque (1) — Calcul dintegrale dune partie limitee par une fonction reciproque (1) — Integrale des fonctions inverses (1) — La primitive de la fonction reciproque (1) — Calcul d aire fonction reciproque astuce (1) — Integral fonction reciproque aire (1) — Calcul de la primitives de la fonction reciproque (1) — Fonction inverse primitive (1) — Quelle relation il y a t il entre l integrale d une fonction et l integrale de sa bijection reciproque (1) — Relation entre fonction reciproque et integrale (1) — Primitive d une fonction reciproque formule generale (1) — Aire fonction reciproque (1) — Formule de la primitive de la reciproque (1) — Relation entreintegrale d une fonction et sa reciproque (1) — Integration de la bijection reciproque d une fonction. (1) — Aire courbe reciproque (1) — Comment taper la fonction reciproque sur latex (1) — Tous les astuces de fonction reciproque (1) — Primitives des fonctions reciproques (1) — Egalite d une integrale d une fonction et sa reciproque (1) — Fonctions reciproques et calculs d aire (1) — Primitive de reciproque (1) — Reciproque d une fonction difficil (1) — Derive de l integrale d une fonction reciproque (1) — Integrale de fonction reciproque (1) — Fonction reciproque sur latex pdf (1) — Fonction reciproque integrale (1) — Content (1) — Integralle dune fonction reciproque (1) — Trouver des fonction reciproque (1) — Reciproque d une integration (1) — Inclusion des fonction reciproque (1) — Integrales reciproques (1) — Serie+fonction+reciproque-solution (1) — Aire entre 2 courbes (1) — Reciproque fonction integrale (1) — Probleme integration des fonction (1) — Primitives des fonctions reciproques (1) — Fonction inverse d une integrale (1) — Integrale de la reciproque d une fonction (1) — Calcul d aires et reciproques (1) — Egalite d une integration d une fonction et sa reciproque (1) — Comment calculer l integrale de la fonction reciproque sans calculer la fonction reciproque (1) — Fonction reciproque integrale pdf (1) — Application reciproque de l integration (1) — Comment trouver la fonction reciproque d une fonction (1) — Calcul de la reciproque d une fonction integral (1) — Fonctons reciproques pdf (1) — Determiner la reciproque d une fonction integrale (1) — Calculs d aires et fonctions reciproques (1) — Fonction reciproque et integrale (1) — Latex primitive integration (1) — Relation d integrale d une fonction et de sa reciproque (1) — Calcul d aires integrales fonction reciproques (1) — Comment integrer une fonction connaissant la bijection reciproque (1) — Aire integrale fonction reciproque (1) — Resultat integrales a l aide de fonctions reciproques (1) — Relation entre l inetegral d une fonction et de sa fonction reciproque (1) — Le primitive de fonctions inverse et reciproque (1) — Relatiin entre laire d une courbe et celle de sa reciproque (1) — Integrale de la fonction inverse reciproque (1) — Integration d une fonction reciproque.pdf (1) — Integrale reciproque pdf (1) — Bijection reciproque integrale (1) — Calcul fonction reciproque (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete