Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 15-06-2012 15:06:22

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3330

Réccapitulatif des fonctions remarquables

Je crée juste ce topic pour faire un récapitulatif des fonctions croisées ou non sur ce site et qui sont remarquables.

1)

f(x)=(1+x)/(1-x) et f°f°f°f(x)=x et f(i)=i

2)

Sur R la seule application indéfiniment dérivable dont toutes les dérivées (et elle-même) sont comprises entre -1 et 1, et telle que f'(0)=1 est sin(x)

Démonstration

3)

Fonction intégrable sur [-1;1] mais pas sur [0;1]

Démonstration

4) Soit [latex]D=\{(x;y)|x^2+y^2 \le 1\}[/latex] d'un disque du plan, et [latex]C=\{|u| \le 1 \text{ et } |v| \le 1\}[/latex] un carré.

Soi f définit par [latex]f(0,0)=0[/latex] et [latex]\forall (x;y) \in (\mathbb{R}-\{0}\})^2 \text{, } f(x;y)=\left(\frac{x\sqrt{x^2+y^2}}{max(|x|;|y|};\frac{y\sqrt{x^2+y^2}}{max(|x|;|y|}\right)[/latex] alors [latex]f[/latex] est un homéomorphisme de [latex]D[/latex] sur [latex]C[/latex].

Autrement dit, [latex]f(disque)=carré[/latex]



Annonces sponsorisées :

"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
  • |
  • Répondre

#0 Pub

 #2 - 26-06-2012 11:13:36

Clydevil
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 820
Lieu: Seahaven island

Récapitulatif des fonctions rmarquables

Ba moi je les aime bien tes fonctions!
Surtout la propriété de sinus que je trouve magnifique.

Je suis en train de chercher une famille de fonctions facilement expressibles tel que
fof n fois soit l’identité, continue et définie partout.

 #3 - 26-06-2012 19:33:46

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3330

récapitulatif des foncyions remarquables

Il va me falloir minimum un an de prépa pour en comprendre les démonstrations.

Pour ta famille de fonction, rapidement on peut considérer f(x)=1/u et f(1/u)=1, ou u est une fonction.
Ca marche pour u=x
Et ca marche pour u=n*x

Preuve par récurrence :
Soit p(n)="fof(1/(n*x))=x est vraie"

Initialisation :
Pour u=1*x on a f(x)=1/x et f(u)=x

Généralisation, soit n en entier naturel fixé, on supoose p(n) vraie.

u=1/((n+1)*x)
f(x)=1/((n+1)*x)
Donc fof(x)=1/[(n+1)*1/((n+1)*x)]=x

P(n+1) et P(1) sont vraies, par récurrence, P(n) est vraie pour tout n!

Shadock smile

PS : Bonne chance pour ta recherche, j'ai fait ce qui était facile pour moi ^^
NB : Bien que je ne puisse le montrer, mon résultat marche pour tout n réel !


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #4 - 26-06-2012 20:01:51

Clydevil
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 820
Lieu: Seahaven island

Récapitultif des fonctions remarquables

Il manque le "continue" lol dans ton prolongement de 1/x qui n'est pas continue en 0

RQ: La fonction identité marche toujours mais n'est pas pertinente dans la mesure ou on aimerait qu'avant le n-ieme itéré on trouve autre chose que l'identité.

 #5 - 27-06-2012 09:12:10

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3330

Récapitulatif des fonctioons remarquables

Je n'avais pas vu le continue.

Au pire tu fais 1/x si x dif de 0 et f(0)=0 tongue
Non j'ai rien dit je sors...

Shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #6 - 27-06-2012 09:20:48

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,610E+3

Récapitulatif des foncions remarquables

f(x)=-x ? OK ----> big_smile

 #7 - 27-06-2012 09:31:55

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2801
Lieu: Luxembourg

récapitulatif des finctions remarquables

@Clydevil
J'ai trouvé quelques fonctions tel que fofo...of = Id, mais pas continues et définies sur tout R (et je crois que c'est toute la difficulté).

 #8 - 27-06-2012 09:49:02

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,610E+3

Récapitulatif des fonctins remarquables

Plus sérieusement, toutes les fonctions de type f(x) = k-x semblent se prêter à l'exercice.

fof(x) = k - (k-x) =x

 #9 - 27-06-2012 10:49:10

Clydevil
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 820
Lieu: Seahaven island

récapitulatif des fonctions temarquables

Oui mais la difficulté commence après.
pour f  ->  x convient.
pour fof -> -x convient.
pour fofof  -> je n'ai pas d'exemple.
etc...

Évidemment comme je l'ai dit il s'agit de trouver des fonctions continues, définies partout sur R et pertinentes.
Elles sont considérées comme pertinentes lorsque leur itéré ne donne pas l’identité avant le n-ieme qu'on vise.

Par exemple x -> -x  est pertinente pour fof  mais pas pour fofofof.

 #10 - 27-06-2012 13:41:19

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

récapitulatif des fonctions remaequables

Clydevil a écrit:

Ba moi je les aime bien tes fonctions!
Surtout la propriété de sinus que je trouve magnifique.

Je suis en train de chercher une famille de fonctions facilement expressibles tel que
fof n fois soit l’identité, continue et définie partout.

Tu n'as pas dit de R dans R.
Je propose donc: [latex]f(z)=e^{\dfrac{2i\pi}n}.z[/latex].

Toujours pas de latex, je vois. Donc f(z)=exp(2ipi/n).z.

Si tu veux revenir dans R, tu peux sans doute garder l'idée en travaillant sur les parties réelles de compositions de rotations? A voir. Peux-être avec 2 fonctions (une pour la partie réelle et une pour la partie imaginaire)?

 #11 - 08-11-2012 01:17:57

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3330

récapitulatif des fpnctions remarquables

Ajout d'une fonction rigolotte qui transforme un disque en carré!

Shadock smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 20 moutons, ils meurent tous sauf 12, combien en reste-t-il ?

Sujets similaires

Sujet Date Forum
16-05-2012 Blabla
07-10-2010 Blabla
06-10-2008 Blabla
07-09-2008 Blabla
P2T
Hommage par ravachol
04-10-2010 Blabla
06-07-2013 Blabla
P2T
09-02-2011 Blabla
21-12-2007 Blabla
23-01-2009 Blabla

Mots clés des moteurs de recherche

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete