Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 16-05-2012 20:11:36

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intégration et fonctions réciproquse

Bonjour à tous, je me suis rendu compte qu'il était très difficile d'obtenir la fonction réciproque d'une fonction quelconque. Notamment pour les polynômes.

Aussi ai-je réfléchis à une méthode en travaillant sur les calculs d'aires entre la courbe et l'axe Ox et entre la courbe et l'axe Oy.

En prenant f(x)=x je vous rassure le résultat était trivial.
Je me suis alors empressé d'essayer avec f(x)=x^2 (mon but était d'arriver à x^(1/2) )

Voici d'abord mon raisonnement dans le cas général :
http://img4.hostingpics.net/pics/674552exemple.png
En rouge :  [latex]A=\int_0^a f(x) dx[/latex]
En vert : [latex]B=\int_0^{f(a)} f^{-1}(x) dx[/latex] (la fonction réciproque)

De plus [latex]A+B=a*f(a)[/latex]

On peut donc écrire trivialement : [latex]\int_0^{f(a)} f^{-1}(x) dx=a*f(a)-\int_0^a f(x) dx[/latex]

Pour trouver [latex]f^{-1}(x)[/latex] il suffira de dériver la primitive.


Premier problème :
Je n'arrive pas à définir toutes les variables et constante pour que mon résultat soit bien une primitive et non pas une simple constante.

Deuxième en essayant avec x² :
J'obtiens : [latex]\int_0^{f(a)} f^{-1}(x) dx=\frac{2a^3}{3}[/latex]

En posant maintenant "a" est une variable comment retrouver la fonction réciproque de x² ? Car f(a)=a^2 et comme on cherche la fonction réciproque x² on ne peut pas en revenir à [latex]\int_0^{a} f^{-1}(x) dx=\frac{2a^{3/2}}{3}[/latex] qui est bien une primitive de la fonction racine carré.

Merci d'avance pour vos réponses smile
Shadock



Annonces sponsorisées :

"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
  • |
  • Répondre

#0 Pub

 #2 - 17-05-2012 11:20:47

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Intération et fonctions réciproques

Pour une fonction réciproque, le plus simple que j'ai trouvé est de tourner le graphique de sa courbe représentative de 90 degrés...Méthode que j'emploie aussi volontiers pour trouver le devenir de la suite correspondante...

 #3 - 17-05-2012 11:56:20

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intgration et fonctions réciproques

Je sais qu'on peut le faire selon la droite d'équation y=x

Mais moi je ne cherche pas à savoir à quoi elle ressemble mais quelle est son équation. Si je cherche la fonction réciproque de [latex]\sum_{i=1}^5 a_i*sin(x-\frac{\pi}{3})^{2i+3}[/latex] je fais quoi? ^^

Au départ je pensais que ma méthode serait très pratique sauf que quand on essaye... donc si il y avait un courageux capable de m'aider je lui en serait très reconnaissant big_smile

Shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #4 - 17-05-2012 12:05:04

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

intégration et fonctions réciproquzs

Je n'ai pas de réponse mais ta méthode est pleine d'astuce. Maintenant, la résolution des primitives n'est pas toujours aisée, loin s'en faut...

 #5 - 17-05-2012 13:01:06

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4776

intégration et fonctoons réciproques

@Shadock

Quelle est la dérivée de [latex]g(x)=\int_0^{f(x)}f^{-1}(t)dt[/latex] ?

Vasimolo

 #6 - 17-05-2012 15:29:03

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intégration et fonctions réiproques

[TeX]\int_0^{f(x)}f^{-1}(t)dt=F^{-1}(f(x))-F^{-1}(0)[/TeX]
En réalité je n'en sais rien j'ai regardé la formule pour calculer la dérivé d'un fonction réciproque. Mais là avec la primitive tout ça...

Surtout que ma fonction de départ s'annule sur son ensemble de définition. Alors je ne sais pas comment faire yikes

Je pense que je complique les choses mais d'après cette méthode Bijection réciproque :
[TeX]g'(x)=\frac{1}{F'(x)\circ F^{-1}(x)}\circ f(x)-f(0)[/TeX]


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #7 - 17-05-2012 16:27:49

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4776

Intégration et fonctions réciproquess

Le problème est que la borne supérieure de l'intégrale dépend de [latex]x[/latex] mais n'est pas [latex]x[/latex] smile

Si tu notes [latex]h(x)=\int_0^xf^{-1}(t)dt[/latex] alors on a bien  [latex]h'(x)=f^{-1}(x)[/latex] .

Si [latex]g(x)=\int_0^{f(x)}f^{-1}(t)dt=h\circ f(x)[/latex] alors [latex]g'(x)=h'\circ f(x).f'(x)=x.f'(x)[/latex]

Si tu prends [latex]f(x)=x[/latex] , pas de problème [latex]g'(x)=x.1=x[/latex] mais pour [latex]f(x)=x^2[/latex] , [latex]g'(x)=2x^2\neq x.[/latex]

Vasimolo

 #8 - 17-05-2012 18:27:12

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intégration et fonctions réciprqoues

Donc je ne peux pas utiliser cette méthode c'est ça ?

Je n'ai pas trop compris ton dernier exemple le fait que ça soit différent de x qu'est-ce que ça prouve ?


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #9 - 17-05-2012 23:42:49

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4776

Intégration et fonctions récirpoques

En fait je ne vois pas trop où tu veux en venir et il me semble qu'il y a des problèmes dans tes formules :

[latex]\int_0^{f(x)}f^{-1}(t)dt=F^{-1}(f(x))-F^{-1}(0)[/latex]

Si [latex]F^{-1}[/latex] désigne une primitive de [latex]f^{-1}[/latex] , c'est faux !

Si [latex]F[/latex] est la primitive de [latex]f[/latex] qui s'annule en [latex]0[/latex] , il me semble que :
[TeX]\int_0^{f(x)}f^{-1}(t)dt=xf(x)-F(x)[/TeX]
Ce qui ne permet pas d'obtenir une primitive de [latex]f^{-1}[/latex] mais je ne suis pas sûr d'avoir vraiment compris ce que tu cherches  smile

Vasimolo

 #10 - 18-05-2012 00:02:38

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

intégration et fonctions récipriques

Alors en prenant mon cours :
[TeX]\int_a^b f(x) dx= F(b)-F(a)[/TeX]
Donc si je pose [latex]f(x)=g^{-1}(x)[/latex] alors [latex]\int_a^b f(x) dx=G^{-1}(b)-G^{-1}(a)[/latex]

Ce que je cherche c'est l'équation de la fonction réciproque de la fonction que je connais. Tout est écrit dans mon premier post smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #11 - 18-05-2012 00:16:15

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4776

Intégration et fonctions réciproquess

Le problème est qu'une des bornes dépend de [latex]f[/latex] qui figure aussi dans l'intégrale , il y a donc une fonction composée qui traîne quelque part .

C'est ce que j'ai voulu dire dans mes précédentes interventions smile

Vasimolo

 #12 - 18-05-2012 09:06:50

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

intégration zt fonctions réciproques

Donc il faut que je trouve une autre méthode pour arriver à bout de cette technique ?
Je vais en discuter avec mon prof et je te tiens au courant. smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #13 - 19-05-2012 11:19:45

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

intégration et fonctiobs réciproques

Mon prof m'a dit que c'était une très bonne idée mais inutilisable. Le mieux c'est les séries...donc j'abandonne cette petite recherche parce que les séries comment dire...tongue


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #14 - 19-05-2012 12:17:22

Klimrod
Elite de Prise2Tete
Enigmes résolues : 40
Messages : 3820
Lieu: hébesphénorotonde triangulaire

Intégratio et fonctions réciproques

Bah... Une intégrale n'est-elle pas la limite d'une série ? N'est-ce pas ce que disait Riemann ?


J'ai tant besoin de temps pour buller qu'il n'en reste plus assez pour bosser. Qui vit sans folie n'est pas si sage qu'il croit.

 #15 - 20-05-2012 00:48:15

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intégration et fonctions érciproques

Oui mais bon d'abord je suis en Terminale OK! tongue et deuxièmement les maths ne font pas partis de mon onanisme intellectuel. Donc même si je m'interesse à çà je ne suis pas prêt de devenir quelqu'un qui de la finesse je suis beaucoup trop bourrin pour ce genre de chose.

Quoiqu'il en soit j'aimerai bien arrivé au bout de ma recherche donc je prends tout ce que l'on me dit c'est tout benef pour moi big_smile

Shadock  smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #16 - 20-05-2012 10:49:16

perceval
Chevalier de P2T
Enigmes résolues : 48
Messages : 723
Lieu: 37

Intégratino et fonctions réciproques

shadock a écrit:

Donc il faut que je trouve une autre méthode pour arriver à bout de cette technique ?
Je vais en discuter avec mon prof et je te tiens au courant. smile

shadock a écrit:

Mon prof m'a dit que c'était une très bonne idée mais inutilisable. Le mieux c'est les séries...donc j'abandonne cette petite recherche parce que les séries comment dire...tongue

Quel beau métier professeur !  Spoiler : [Afficher le message] c'est une contrepétrie


When i was a child i was a jedi

 #17 - 20-05-2012 13:17:48

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Intégration et foncitons réciproques

Une très bonne, d'ailleurs !


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #18 - 20-05-2012 16:55:36

langelotdulac
Ange de Prise2Tete
Enigmes résolues : 49
Messages : 2963
Lieu: Paradis

Intégrationn et fonctions réciproques

Un peu éculée .... Spoiler : [Afficher le message] moins fine, mais faite maison tongue (ceci expliquant cela ^^'  Encore une ! lol))


Tu es largement assez dingo pour qu'un Minito te semble cohérent \o/ !

 #19 - 21-05-2012 15:37:44

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

intégratiob et fonctions réciproques

[TeX]F^{-1}[/latex] n'est PAS une primitive de [latex]f^{-1}[/latex] (dans le cas général) lorsque F est une primitve de f.
La formule générale est:
[latex](f^{-1})'=\dfrac1{f'of^{-1}}[/TeX]
Ton égalité tourne en rond. En effet, en posant G une primitive de [latex]f^{-1}[/latex] et F une primitive de f, en en supposant que toutes les égalités ci-dessous sont valides et ont un sens, ton égalité:
[TeX]\int_{0}^{f(a)}f^{-1}(t)dt=a.f(a)-\int_0^af(t)dt[/TeX]
s'écrit:
G(f(a))-G(0)=a.f(a)-(F(a)-F(0))

En la dérivant par rapport à 'a' (et encore une fois en supposant que tout a un sens mathématiquement parlant), on obtient:
[TeX]G'(f(a)).f'(a)=f(a)+a.f'(a)-F'(a)[/TeX]
Puisque [latex]G'=f^{-1}[/latex] et [latex]F'=f[/latex], on a:
[TeX]f^{-1}(f(a)).f'(a)=f(a)+a.f'(a)-f(a)[/TeX]
Soit: [latex][f^{-1}(f(a))-a].f'(a)=0[/latex]

Et toujours si c'est valide (f'(a) différent de 0):

[latex]f^{-1}(f(a))=a[/latex].

Magnifique non? smile

Je ne vois pas tellement de façon d'exprimer la réciproque d'une fonction en passant par son intégrale de façon générale...

 #20 - 22-05-2012 19:39:03

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Intégration et foncctions réciproques

Ok bon et bien c'était une Fausse Bonne Idée ^^


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Si il y a 88 pommes et que vous en prenez 44, combien vous en avez ?

Sujets similaires

Sujet Date Forum
15-06-2012 Blabla
30-01-2010 Blabla
31-05-2014 Blabla
P2T
Bonne année 2012 par EfCeBa
01-01-2012 Blabla
P2T
03-04-2009 Blabla
05-07-2008 Blabla
P2T
Sauter une classe? par Promath-
19-09-2011 Blabla
P2T
Ne floode pas qui veut par LeSingeMalicieux
29-07-2010 Blabla
P2T
17-03-2012 Blabla

Mots clés des moteurs de recherche

Mot clé (occurences)
Fonction reciproque astuces (6) — Primitive fonction reciproque (5) — Integration fonction reciproque (5) — Integrale fonction reciproque (4) — Primitive d une fonction reciproque (4) — Primitive de la fonction reciproque (4) — Integration de fonction reciproque (3) — Fonction reciproque (3) — Methode pour determiner fonction reciproque (3) — Integrale fonction reciproque pdf (3) — Integrale de l inverse d une fonction f-1 (2) — Integrale de la fonction reciproque (2) — L integrale d une fonction reciproque (2) — L integrale de fonction reciproque (2) — Integrale d une fonction reciproque (2) — Calcul de la reciproque d une fonction quelconque (2) — Integration des fonctions reciproques (2) — Fonction reciproque d une integrale (2) — Fx = x^x (2) — Axe x et axe f(x) (2) — Reciproque fonction integrale (1) — Aire entre 2 courbes (1) — Serie+fonction+reciproque-solution (1) — Integrales reciproques (1) — Reciproque d une fonction difficil (1) — Probleme integration des fonction (1) — Inclusion des fonction reciproque (1) — Fonction inverse d une integrale (1) — Trouver des fonction reciproque (1) — Integrale de la reciproque d une fonction (1) — Content (1) — Derive de l integrale d une fonction reciproque (1) — Egalite d une integration d une fonction et sa reciproque (1) — Fonction inverse primitive (1) — Calculs d aires et fonctions reciproques (1) — Fonctions reciproques et calculs d aire (1) — Primitive de reciproque (1) — Fonction reciproque integrale (1) — Fonction reciproque sur latex pdf (1) — Reciproque d une integration (1) — Relation d integrale d une fonction et de sa reciproque (1) — Fonctons reciproques pdf (1) — Aire integrale fonction reciproque (1) — Determiner la reciproque d une fonction integrale (1) — Calcul d aires et reciproques (1) — Calcul de la reciproque d une fonction integral (1) — Primitives des fonctions reciproques (1) — Integrale de fonction reciproque (1) — Comment calculer l integrale de la fonction reciproque sans calculer la fonction reciproque (1) — Integralle dune fonction reciproque (1) — Primitive de la fonction r?ciproque (1) — Egalite d une integrale d une fonction et sa reciproque (1) — Application reciproque de l integration (1) — Fonction reciproque integrale pdf (1) — Integral fonction reciproque aire (1) — Comment trouver la fonction reciproque d une fonction (1) — Calcul d aire fonction reciproque astuce (1) — Latex primitive integration (1) — Fonction reciproque et integrale (1) — Integrale des fonctions inverses (1) — Resultat integrales a l aide de fonctions reciproques (1) — Integral de la fonction reciproque (1) — Integrale fonction et de sa bijection (1) — Integration par les fonctions reciproques (1) — Integrale de la fonction inverse reciproque (1) — Latex integrale grande barre apres la primitive (1) — Reciproque d une fonction quelconque (1) — Primitives des fonctions reciproques (1) — (1) — Comment determiner le domaine d arrivee et de depart d une fonction reciproque (1) — Fonction reciproque d une fonction quelconque (1) — En mathematique la relation de l integrale d une fonction et sa reciproque (1) — Integral fonction reciproque (1) — Fonction reciproque et integral (1) — Integration du fonction reciproque (1) — Fonction receproquz (1) — Integration par fonction reciproque (1) — Fonction reciproque formule generale (1) — Integrale de l inverse d une fonction (1) — Calcul d aire de la fonction reciproque (1) — Fonction integrale et sa reciproque (1) — Integration d une fonction reciproque.pdf (1) — Formule de la primitive de la reciproque (1) — Aire fonction reciproque (1) — Relation entre fonction reciproque et integrale (1) — Integrale reciproque pdf (1) — Primitive d une fonction reciproque formule generale (1) — Tous les astuces de fonction reciproque (1) — Comment taper la fonction reciproque sur latex (1) — Calcul fonction reciproque (1) — Calcul d aires integrales fonction reciproques (1) — Integral des fonctions reciproques (1) — Integration de la bijection reciproque d une fonction. (1) — Relation entre l integrale d une fonction et sa r?ciproque (1) — Relation entreintegrale d une fonction et sa reciproque (1) — Aire courbe reciproque (1) — Calcul d aire avec une bijection reciproque (1) — Quelle relation il y a t il entre l integrale d une fonction et l integrale de sa bijection reciproque (1) — Les fonctions reciproques et la relations de leurs primitives (1) — Derivee de la fonction reciproque (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete