Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 14-05-2014 21:20:02

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2751
Lieu: Luxembourg

Balade en caalier

On souhaite déplacer un cavalier de la case en bas à gauche (a1) vers la case en haut à droite (h8) en parcourant chaque case de l’échiquier vide une et une seule fois. Quelle est la seule réponse possible à donner ?

Edit: ballade balade (dans le titre).



Annonces sponsorisées :
  • |
  • Répondre

#0 Pub

 #2 - 14-05-2014 21:30:32

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4753

Blaade en cavalier

Il me semble que la case sur lequel se pose le cavalier change de couleur à chaque coup, c'est donc plutôt mal engagé pour le pauvre homme smile

Vasimolo

 #3 - 14-05-2014 21:52:07

golgot59
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1374
Lieu: Coutiches

Balade en acvalier

Que c'est impossible ? big_smile

 #4 - 14-05-2014 22:02:07

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,510E+3

balade zn cavalier

Il y en a au moins 2 , symétrie oblige.

Ou alors il n'y en a pas... 

Donc la réponse est c'est impossible, je reviens plus tard pour une preuve éventuelle.

Logique en réfléchissant 2 mn : chaque déplacement de cavalier change la parité colonne + ligne , or, il faut 63 déplacement donc on ne peut pas passer de a1 pair à h8 pair.

 #5 - 15-05-2014 00:59:37

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1746

balade en cacalier

Pas possible car après 63 mouvements on devrait arriver sur une case de couleur différente.

 #6 - 15-05-2014 01:00:16

Evargalo
Visiteur

Balade en cavaier

Il n'y a aucune solution:

Il faudrait jouer 63 coups pour cela. Or le cavalier change de couleur de case à chaque coup et les cases a1 et h8 sont la même couleur, on ne peut donc passer de l'une à l'autre en un nombre impair de coups.

 #7 - 15-05-2014 01:26:59

dylasse
Professionnel de Prise2Tete
Enigmes résolues : 21
Messages : 374

BBalade en cavalier

La case de départ et d'arrivée sont de même couleur, le parcours fait 64 (nombre pair) cases et la marche du cavalier alterne les cases noire et blanches.
Ce n'est donc pas possible de passer par les 64 cases une unique fois.

 #8 - 15-05-2014 08:28:23

Lui-meme
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2654
Lieu: Île de France

aBlade en cavalier

Ca ressemble au problème du cavalier d'Euler, résolu par al adli ar rumi , problème déjà posé par gwen dans son énigme "Grille spéciale hommes : Emmenez les danser", en démarrant de h8... cool


http://img11.hostingpics.net/pics/844649gwencavalier.png

 #9 - 15-05-2014 14:16:25

Klimrod
Elite de Prise2Tete
Enigmes résolues : 40
Messages : 3789
Lieu: hébesphénorotonde triangulaire

balade zn cavalier

Bonjour,

La formulation de ta question laisse supposer que ça n'est pas possible.
Et effectivement ça n'est pas possible. big_smile

A chaque mouvement,  le cavalier change de couleur de case. Or les cases a1 et h8 sont toutes les deux blanches. Donc si c'était possible, le cavalier ferait un nombre pair de mouvements, ce qui bloquerait un nombre impair de cases, ce qui ne permet pas de couvrir la totalité de l'échiquier, qui a un nombre pair de cases.
Cqfd.

Klim.
PS. "Balade", ça ne prend qu'un seul L. Sauf si la ballade est musicale... cool


J'ai tant besoin de temps pour buller qu'il n'en reste plus assez pour bosser. Qui vit sans folie n'est pas si sage qu'il croit.

 #10 - 15-05-2014 22:21:27

Sydre
Professionnel de Prise2Tete
Enigmes résolues : 15
Messages : 152

Blaade en cavalier

On souhaite se déplacer d'une case noire vers une case noire.

Or, pour qu'un cavalier termine sa série de mouvements sur une case de la même couleur que celle de départ il faut effectuer un nombre pair de mouvements.

Sachant qu'il y a [latex]64[/latex] cases sur un échiquier et que la case départ compte comme déjà visitée on doit trouver une solution en [latex]63[/latex] mouvements, ce qui est impossible car [latex]63[/latex] n'est pas pair !

Sympathique smile

 #11 - 15-05-2014 22:42:33

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 564

Balade en cavalieer

Il me semble me rappeler que c'est impossible, mais je ne sais pas pourquoi lol

 #12 - 16-05-2014 21:43:01

langelotdulac
Ange de Prise2Tete
Enigmes résolues : 49
Messages : 2963
Lieu: Paradis

Balade en cavlaier

http://upload.wikimedia.org/wikipedia/commons/thumb/d/da/Knight%27s_tour_anim_2.gif/220px-Knight%27s_tour_anim_2.gif

Je suis nulle aux échecs, mais je me souviens d'une énigme où il était question de de ce problème, connu sous le nom du "cavalier d'Euler", et dont le joueur et théoricien d'échecs arabe al-Adli ar-Rumi en donne une solution vers 840.

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Marche_du_cavalier_selon_al-Adli_ar-Rumi.png/220px-Marche_du_cavalier_selon_al-Adli_ar-Rumi.png

Merci ma mémoire et Wiki big_smile

Edit : Non comptant d'être nulle aux échecs, je ne sais pas lire un énoncé roll
Je m'excuse donc d'avoir posté n'importe quoi et retourne jouer aux dominos ^^


Tu es largement assez dingo pour qu'un Minito te semble cohérent \o/ !

 #13 - 17-05-2014 08:44:10

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3025

BBalade en cavalier

Pour répondre, il faudrait poser une question, non ?

 #14 - 19-05-2014 22:06:23

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2751
Lieu: Luxembourg

Balade en cavvalier

Merci à tous d'avoir participé. La seule réponse possible à donner est que c'était impossible. big_smile

J'ai corrigé la faute dans le titre: balade (avec un seul "L") = promenade & ballade (avec deux "L") = poème ou morceau de musique: merci à ash00 et à Klimrod de me l'avoir fait remarquer. sad

Circonstance atténuante: je ne suis ni français, ni de langue maternelle française, mais tant qu'à écrire, autant le faire correctement. lol

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Si il y a 63 pommes et que vous en prenez 23, combien en avez-vous ?

Sujets similaires

Sujet Date Forum
P2T
Touche par Une-saez
11-05-2009 Enigmes Logiques
01-06-2011 Enigmes Logiques
P2T
Jeu d'allumettes par nipon
10-04-2008 Enigmes Logiques
P2T
Jeux à deux 1bis par franck9525
13-03-2011 Enigmes Logiques
P2T
Maux croisés par SaintPierre
31-03-2011 Enigmes Logiques
P2T
Badaboum ! 7 le défi par franck9525
20-04-2011 Enigmes Logiques
14-11-2013 Enigmes Logiques
P2T
Echecs féériques par gasole
01-03-2011 Enigmes Logiques
15-05-2015 Enigmes Logiques

Mots clés des moteurs de recherche

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete