Forum dédié aux énigmes et à toutes formes de jeux de logique. | Déconnexion |
Tu n'es pas identifié sur Prise2tete : s'identifier. ![]() ![]() |
![]() |
#1 - 29-09-2011 20:16:40
problème de réflexion géométtieNous avons :
#0 Pub#2 - 29-09-2011 20:20:57#3 - 29-09-2011 20:23:38#4 - 29-09-2011 21:46:09
problème de réflexion géométrueTu es sûr de ton énoncé. #5 - 29-09-2011 23:50:43#6 - 30-09-2011 06:37:54
Problème de réfleixon géométrieokay =) #7 - 30-09-2011 09:37:49
Problème d eréflexion géométrieTrès joli, Esereth ! Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298 #8 - 30-09-2011 10:01:01
peoblème de réflexion géométrieJe reconnais que la démo d'esereth est digne d'un déclic "ha-ha" de chez Gardner. #9 - 30-09-2011 12:25:44
Problème de réflexion géométri
Ce n'est pas vrai pour tous les triangles? #10 - 30-09-2011 12:40:25
problème de réflexion géoméyrie
#11 - 30-09-2011 13:01:47
roblème de réflexion géométrieNon je ne pense pas que ça soit vrai pour tous les triangles car si on appelle a, b et c les longueurs des côtés et ha, hb et hc les distances à ces côtés on a #12 - 30-09-2011 17:29:15#13 - 30-09-2011 18:19:32
Problème de réfexion géométrieA mon avis, c'est le sommet dont part la hauteur la plus courte, les distances aux deux autres côtés étant alors nulles. #14 - 30-09-2011 18:52:56
Problème de réflexion géométrrie
Evidemment. La prochaine fois je dessinerai une figure. #15 - 30-09-2011 22:07:34#16 - 01-10-2011 08:36:09
Problème de réflexio géométrieJe me disais bien avoir lu cela quelque part #17 - 01-10-2011 10:41:07
Problème dde réflexion géométrieJoli Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298 #18 - 02-10-2011 17:21:53#19 - 02-10-2011 17:33:41
Problème de réflexino géométrieDans ce cas le meilleur point est celui qui partage le triangle en trois angles égaux . Le triangle n'a même plus besoin d'être équilatéral , il suffit que l'angle le plus grand soit inférieur à 120° , sinon c'est le sommet de l'angle obtus qui réalise le minimum . #20 - 02-10-2011 17:39:22
Problèème de réflexion géométrieVeux-tu parler du point M pour lequel MA + MB + MC est minimal? #21 - 02-10-2011 17:59:38#22 - 03-10-2011 07:24:41#23 - 04-10-2011 18:34:34
Problème de réflexoin géométrie
Comment le prouver ? #24 - 05-10-2011 22:30:33
Problme de réflexion géométrieC'est assez simple mais un peu long , je n'aurai pas le temps de m'y mettre ce soir ni demain mais je posterai plus tard si personne ne s'en charge avant moi Réponse rapideSujets similaires
Mots clés des moteurs de recherche |
![]() | |||||||||||||||||||||||||||||||||
Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact |