Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 18-10-2020 22:23:36

Stewart
Amateur de Prise2Tete
Enigmes résolues : 0
Messages : 5

Rées

Pour tout réel r, ⌊r⌋ est le plus grand entier inférieur ou égal à r et la partie fractionnaire de r est le nombre {r}=r-⌊r⌋. Quel est le nombre de réels r vérifiant 1≤r≤10 et {r}²={r²} ?

Je ne sais comment le montrer.

En essayant avec r=4,0 :
r²=16,0
t=r²-16=0
t²=0

  • |
  • Répondre

#0 Pub

 #2 - 19-10-2020 11:39:32

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3211
Lieu: Luxembourg

réeks

Cela ressemble plus à un exercice scolaire qu’à une énigme.
On peut déjà remarquer que tous les entiers conviennent.
Tout réel r peut s’écrire: r = {r} + ⌊r⌋, avec: 0 ≤ ⌊r⌋ < 1
On a donc: r² = {r}² + 2.{r}.⌊r⌋ + ⌊r⌋²
Pour que: {r}² = {r²}, il faut que: 2.{r}.⌊r⌋ + ⌊r⌋² < 1, soit: ⌊r⌋² + 2.{r}.⌊r⌋ - 1 < 0,
ou encore: ⌊r⌋ < V({r}²+1) - {r}, soit finalement: r < V({r}²+1)
Les réels r vérifiant: 1 ≤ r ≤ 10 et {r}² = {r²} sont donc les suivants:
1 ≤ r < V2; 2 ≤ r < V5; 3 ≤ r < V10; 4 ≤ r < V17; 5 ≤ r < V26; 6 ≤ r < V37; 7 ≤ r < V50; 8 ≤ r < V65; 9 ≤ r < V82 et 10
Le nombre de ces réels est bien entendu infini (pour répondre à ta question).

 #3 - 23-10-2020 22:15:45

Stewart
Amateur de Prise2Tete
Enigmes résolues : 0
Messages : 5

Réesl

Bonsoir Franky,

Je ne comprends pas pourquoi 2.{r}.⌊r⌋ + ⌊r⌋² < 1. Est-ce une coquille ?

Merci de votre réponse.

 #4 - 24-10-2020 10:47:02

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3211
Lieu: Luxembourg

Réelss

Salut. J'ai effectivement inversé partie entière ⌊...⌋ et partie fractionnaire {...}. Mon raisonnement est donc complètement faux. Je reviendrai le modifier dans la journée. A+

Edit: Sauf erreur, je trouve 51 tels nombres, mais je galère un peu sur une démonstration plus rigoureuse. Ces 51 nombres sont:
1       2         3      4          5       6         7       8           9       10
1,5    2,25    3,5    4,125    5,1    6,25    7,5    8,0625    9,5
         2,5              4,25      5,2    6,5              8,125
         2,75            4,375    5,3    6,75             8,1875
                           4,5        5,4                       8,25
                           4,625     5,5                      8,3125
                           4,75       5,6                      8,375
                           4,875     5,7                      8,4375
                                        5,8                      8,5
                                        5,9                      8,5625
                                                                   8,625
                                                                   8,6875
                                                                   8,75
                                                                   8,8125
                                                                   8,875
                                                                   8,9375

Ces nombres s'écrivent tous sous la forme: N = m.2^n + k/2^(n+1), et on aura:
(m.2^n + k/2^(n+1))^2 = (m^2).(2^2n) + m.k + (k/2^(n+1))^2, et donc:
{N}² = {N²}, mais j'ai du mal à démontrer la réciproque.

 #5 - 24-10-2020 18:15:02

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3801

rérls

{r²} = {([r]+{r})²} = {{r}² + 2[r]{r}} car {[r]²} = 0

Donc il faut {2[r]{r}}= 0

Pour chaque [r] de 1 à 9 : 2 [r] solutions: de 0/2[r] à (2[r]-1)/2[r]

Ne pas oublier la solution r = 10.

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 20 moutons, ils meurent tous sauf 12, combien en reste-t-il ?

Sujets similaires

Sujet Date Forum
05-09-2013 Enigmes Mathématiques
P2T
Distance la plus courte par Barbabulle
10-01-2011 Enigmes Mathématiques
P2T
Oooooor par SaintPierre
07-04-2011 Enigmes Mathématiques
16-06-2010 Enigmes Mathématiques
P2T
Divisibilité par perceval
07-05-2008 Enigmes Mathématiques
P2T
10-05-2015 Enigmes Mathématiques
06-01-2013 Enigmes Mathématiques
P2T
17-09-2009 Enigmes Mathématiques
P2T
énigme de maths :) par Mathieu62
02-01-2013 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete