Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 10-11-2010 09:18:24

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1470

Arithmétque et informatique

Les codeurs fous n'auront aucun mal avec ces petits problèmes, pour les autres c'est une bonne occasion de découvrir les subtilités de l'informatique.

Dans un ordinateur, les nombres entiers sont représentés via des bits, qui correspondent à l'écriture de ces nombres en base 2. Par exemple, 37 s'écrit 100101 en binaire
Par ailleurs, un processeur propose un jeu d'instructions, plus ou moins coûteuses en temps. Par exemple, "Comparer deux nombres" ou "Faire une division de deux nombres".

Parmi les opérations les moins coûteuses, on trouve
- les opérateurs logiques
  *  ET, qui agit sur 2 bits et donne comme résultat 1 si et seulement si les deux bits valent 1,
  *  OU, qui agit sur 2 bits et donne comme résultat 1 si et seulement si l'un des deux bits au moins vaut 1,
  *  XOR ou OU EXCLUSIF, qui agit sur 2 bits et donne comme résultat 1 si et seulement si un et un seul des deux bits vaut 1
- les décalages
  * DÉCALAGE DROITE décale tous les bits d'un nombre d'un certain nombre de crans vers la droite
  * DÉCALAGE GAUCHE décale tous les bits d'un nombre d'un certain nombre de crans vers la gauche
- certains indicateurs de tests
  * Savoir si le dernier résultat vaut 0

Parmi les opérations un peu plus coûteuses, on trouve
- les opérateurs arithmétiques + et -

Parmi les opérations encore plus coûteuses, on trouve
- les opérateurs arithmétiques * et /, ainsi que le modulo

Sachant tout cela, quel est le moyen le plus rapide de répondre à ces questions, en utilisant uniquement les opérations ci-dessus et de préférence les moins coûteuses?

1.1) Comment multiplier un nombre par 2 ?
1.2) Comment multiplier un nombre par 2^n ?

2.1) Comment diviser un nombre par 2 ?
2.2) Comment diviser un nombre par 2^n ?

3) Comment savoir si deux nombres sont identiques ?

4.1) Comment calculer le modulo 2 d'un nombre ?
4.2) Comment calculer le modulo 2^n d'un nombre ?

5) Comment savoir si un nombre est une puissance de 2 ?

6) Comment savoir si la somme de deux nombres vaut 1 de moins qu'une puissance de 2?



Annonces sponsorisées :
  • |
  • Répondre

#0 Pub

 #2 - 10-11-2010 10:03:31

Barbabulle
Professionnel de Prise2Tete
Enigmes résolues : 49
Messages : 237

Arithmétique et infformatique

1.1) Comment multiplier un nombre par 2 ?
-> décalage à gauche de 1 (x<<1)

1.2) Comment multiplier un nombre par 2^n ?
-> décalage à gauche de n (x<<n)

2.1) Comment diviser un nombre par 2 ?
-> décalage à droite de 1 (x>>1), division euclidienne
exemples : 34/2=17 => 100010>>1 = 10001, 23/2=11 => 10111>>1=1011

2.2) Comment diviser un nombre par 2^n ?
-> décalage à droite de n (x>>n), division euclidienne
exemples : 34/8 = 34/2^3 = 100010>>3 = 100=4, 70/16 = 70/2^4 = 1000110<<4 = 100 = 4

3) Comment savoir si deux nombres sont identiques ?
-> on XOR les deux nombres et on vérifie que le résultat est égal à 0, (x^y==0)
exemples : 13==13 ? 1101^1101 = 0 : ok, 19==21 ? 10011^10101 = 110 : nok

4.1) Comment calculer le modulo 2 d'un nombre ?
-> on ne garde que le le bit de poid faible en faisant ET 1 (x&1)
exemples : 65 modulo 2 = 1000001 & 1 = 1, 34 modulo 2 = 100010 & 1 = 0

4.2) Comment calculer le modulo 2^n d'un nombre ?
-> on ne garde que les n bits de poids faible an faisant ET n (x&(n-1))
exemples : 72 modulo 16 = 72 modulo 2^4 = 72 & 15 = 1001000 & 1111 = 1000 = 8

5) Comment savoir si un nombre est une puissance de 2 ?
-> on test x&(x-1), si c'est égal à 0, c'est une puissance de 2
exemples = 72 => 72&71 = 1001000 & 1000111 =1000000 => non, 64 => 64 & 63 = 1000000 & 111111 = 0 => ok

6) Comment savoir si la somme de deux nombres vaut 1 de moins qu'une
puissance de 2?
-> on test x&y, si c'est égal à 0, c'est bon.
exemple : 25 + 15 = 40 => 11001 & 1111 = 1001 => non, 25 + 6 = 31 => 11001 & 110 = 0 => ok.

Edit : une erreur s'est glissée dans le 4.2 : il faut lire x&((2^n)-1) au lieu de x&(n-1)
Edit 2 : suite à la mise au point de scarta, il faut en fait lire x&((1<<n)-1) tongue


La paix dans le monde n'est pas menacée par les révoltés, mais par les soumis.        Georges Bernanos

 #3 - 10-11-2010 11:49:23

racine
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1224

Arithmétique e informatique

Pour ma culture, quand tu parles de coût en temps c'est chiffrable directement en temps? Il y a des ratios constants? Du genre multiplier 2 et 3 prend 2 fois plus de temps qu'additionner 2 et 3.

Merci pour ta réponse.

 #4 - 10-11-2010 12:53:13

dhrm77
L'exilé
Enigmes résolues : 49
Messages : 3002
Lieu: Fanning Island-?-Lac Tele,Mali

arithmétique et onformatique

Bon, c;est simple pour moi...

1.1) Comment multiplier un nombre par 2 ?
   on decale a gauche 1 fois
1.2) Comment multiplier un nombre par 2^n ?
  on decale a gauche n fois

2.1) Comment diviser un nombre par 2 ?
  on decale a droite 1 fois
2.2) Comment diviser un nombre par 2^n ?
  on decale a droite n fois

3) Comment savoir si deux nombres sont identiques ?
  on teste si a xor b = 0

4.1) Comment calculer le modulo 2 d'un nombre ?
  on fait un ET avec 1

4.2) Comment calculer le modulo 2^n d'un nombre ?
  on fait un ET avec 2^n-1
ou en detail, soit le nombre X:
- on prend A=0
- on decale A a gauche et ajoute 1, n fois
- on fait un X & A

5) Comment savoir si un nombre est une puissance de 2 ?
  on decale a droite tant que n & 1 = 0
  si le resultat est 1, c'est une puissance de 2.

6) Comment savoir si la somme de deux nombres vaut 1 de moins qu'une puissance de 2?
  il y a peut etre un piege, mais...
- on additionne les 2 nombres.
- on decale a droite tant que n & 1 = 1
- on teste que le resultat est 0.


Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt

 #5 - 10-11-2010 14:21:14

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1470

Arithmétique et informatiqu

Petite précision générale: pour le 4.2, l'entrée est N et pas 2^N

@racine: il n'y a pas vraiment de ratio théorique constant, ça dépend beaucoup de l'architecture du processeur, et beaucoup ont développé des moyens astucieux pour faire des multiplications plus rapidement (avec parfois quelques erreurs, par exemple: http://fr.wikipedia.org/wiki/Bug_de_la_ … du_Pentium ou comment une méthode pour faire des divisions plus rapidement fout en l'air toute une gamme de processeur)

@dhrm77: tes réponses ne sont pas fausses, loin de là; à ceci près que les mécanismes de type "boucle" ne sont pas dans le jeu d'instructions que j'ai défini dans l'énoncé (du coup, il faut faire tenir chaque réponse en une seule instruction "haut niveau")

 #6 - 10-11-2010 16:28:28

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3327

Arithmétique et informatiquee

Message vide pour le moment.


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #7 - 10-11-2010 17:30:47

luthin
Professionnel de Prise2Tete
Enigmes résolues : 36
Messages : 124

arithmétiqur et informatique

Il m'arrive effectivement de coder, mais j'avoue ne jamais avoir poussé l'optimisation d'un code à ce point. J'y penserai sans doute la prochaine fois. Cependant, je ne connaissais pas certaines fonctions comme les décalages...

1.1) 2*p=p+p. On remplace donc la multiplication par une addition.
1.2) p*2^n. Ca revient à décaler tous les bits de p de n crans vers la gauche.

2.1) p/2=p*2^(-1). On décale tous les bits de p de 1 cran vers la droite. Si la variable à laquelle on assigne le résultat est déclarée comme un entier, le résultat est E(p/2).
2.2) p/2^n=p*2^(-n). On décale tous les bits de p de n crans vers la droite. Même remarque qu'en 2.1).

3) p==q <=> p-q==0. On fait donc la soustraction et on regarde si tous les bits du résultat sont nuls (ca revient à faire une boucle sur tous les bits de var=p-q). Enfin, je pense qu'il existe toujours dans les langages de programmation des indicateurs de test "==", je suppose qu'ils en tiennent déjà compte, non?

4.1) p mod(2)=1 si p est impair <=> si le premier bit de p est 1 (en partant de la droite)
p mod(2)=0 si p est pair <=> si le premier bit de p est 0.
Le résultat est donc la valeur du premier bit de p (en partant de la droite).
4.2) p mod(2^n). On remplace tous les bits qui ont un poids >=2^n par 0.

5) p==2^n <=> Un seul bit de p vaut 1. Ca revient encore à faire une boucle sur tous les bits de p...

6) p+q==2^n-1 <=> tous les bits de p+q valent 1. idem...

Bon, j'ai souvent fait intervenir des boucles, mais tu n'en parles pas, il me manque sûrement quelque chose...
Intéressant, merci. smile

 #8 - 10-11-2010 17:41:52

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

ariyhmétique et informatique

Très bonne idée, cette énigme/rappels smile


Pour les 1 et 2, il s'agit de décalages :
1.1) décaler d'un cran sur la gauche
1.2) décaler de n crans sur la gauche
2.1) décaler d'un cran sur la droite
2.2) décaler de n crans sur la droite


Pour le 3, une comparaison bit à bit suffit : si
(bit 1 du nombre 1 XOR bit 1 du nombre 2) OU (bit 2 du nombre 1 XOR bit 2 du nombre 2) OU ...
vaut 1, alors les nombres sont différents (on peut arrêter la vérification au premier XOR qui vaut 1, si ça arrive).



4.1) C'est son dernier bit.
4.2) C'est le nombre constitué de ses n derniers bits.
Comment le faire seulement avec les opérations que tu donnes au début ? Je ne vois pas pour l'instant.


5) Si un seul bit du nombre vaut 1, alors ce nombre est une puissance de 2. Autrement dit, on veut (bit 1) XOR (bit 2) XOR (bit 3) XOR ... = 1.


6) Si la somme de deux nombres vaut une puissance de 2 moins 1, cela donnera en binaire 111...111 (avec un nombre quelconque de 1).
Donc, si on ne prend pas en compte les 0 qui précèdent, et qu'on considère que les deux nombres sont codés sur le même nombre de bits (i.e. le nombre de bits que prend le plus grand), on veut que (bit du nombre 1) XOR (bit correspondant du nombre 2) vaille 1 à chaque fois, autrement dit :
(bit 1 du nb 1 XOR bit 1 du nb 2) AND ... AND (bit n du nb 1 XOR bit n du nb 2) = 1
Le cas échéant, on peut s'arrêter dès qu'un des termes vaut 0 (comme pour le 3).


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #9 - 10-11-2010 22:17:35

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

Arithmétique et informatiique

Merci de faire découvrir cela aux non informaticiens. C'est une très bonne idée. On pourrait sans doute aller un peu plus loin dans une suite...

Tu as oublié à mon avis quelques opérateurs très importants: NOT qui inverse tous les bits d'un nombre, INC qui augmente de 1 (plus rapide qu'une addition générale) et DEC qui diminue de 1.

1.1: Décalage à gauche de 1 bit (A << 1)
1.2: Décalage à gauche de n bits (A << n)

2.1: Décalage à droite de 1 bit
2.2: Décalage à droite de n bits

3: A-B et on teste le bit permettant de savoir si le résultat est 0
On peut aussi faire NOT (A XOR (NOT B)) et vérifier si le résultat est 0

4.1: A ET 1: on isole le bit de poids faible)
4.2: A ET ((1 << n)-1): on isole les n bits de poids faible.

5: A ET (A-1) et on teste le bit de résultat nul. Si A est une puissance de 2, 2^n, A s'écrit avec un 1 suivi de n zéros, A-1 s'écrit avec n chiffres 1. Le ET donne donc 0. Si A n'est pas une puissance de 2, A-1 et A ont le même bit de poids fort et donc le ET ne donne pas 0

6: Si A+B donne une puissance de 2 moins -1, c'est qu'il ne s'écrit qu'avec des 1. Regardons le bit de poids faible. Pour valoir 1, il faut qu'il soit à 1 dans un des nombres et à 0 dans l'autre et ne génère pas de retenue. La situation du bit 1 est la même et ainsi de suite. Donc bit à bit, il y a à chaque fois 1 1 et 1 0. Donc XOR entre A et B donnera que des 1 et donc (A XOR B) ET ((A XOR B)+1) sera nul. (on ne calcule A XOR B qu'une fois). I doit y avoir mieux, je vais creuser...

Pour ceux qui aiment ça:
http://graphics.stanford.edu/~seander/b … With64Bits

 #10 - 11-11-2010 10:20:58

Yannek
Passionné de Prise2Tete
Enigmes résolues : 10
Messages : 60

Arithmétique et infomratique

On suppose que l'on travaille avec des entiers non signés.

1. Multiplication par 2 ou 2^n
1a. 2*N = G(1) N (un décalage à gauche)
1b. 2^n*N = G(n) N (n décalages à gauche)

2. Quotient de la division euclidienne par 2 ou 2^n
2a. N div 2 = D(1) N (un décalage à droite)
2b. N div 2^n=D(n) (n décalages à droite)

3. Test d'égalité
N=M ssi N xor M=0

4. Reste de la division euclidienne par 2 ou 2^n
4.a. N mod 2 = N xor (G(1)D(1) N)
4.b. N mod 2^n = N xor (G(n)D(n) N)

5. Tester si N est une puissance de 2
N et (N-1)=0

6. Tester si N+M+1 est une puissance de 2
(N ou M) xor (N xor M)=0

Je me suis peut-être trompé pour les deux derniers, j'y réfléchis.

 #11 - 11-11-2010 11:23:44

Palin01
Passionné de Prise2Tete
Enigmes résolues : 39
Messages : 70
Lieu: Lille

Arithmétiue et informatique

1-1) En base n, si on multiplie un nombre par n on "rajoute un 0 à droite" donc ici on fait l'opération "Décaler à gauche d'un cran"
1-2)soit N = [latex] a_m 2^m+a_{m-1} 2^{m-1} +...+a_0 2^0[/latex]
[latex]N* 2^n=a_m 2^{m+n}+a_{m-1}2^{m-1+n}+...+a_02^n[/latex]et ensuite tous les coefficients des puissances de 2 inférieurs à n sont nuls : on "rajoute" donc n zéros.
On fait donc l'opération "Décaler à gauche de n crans"

2) En informatique la division prend 2 entiers et renvoie un entier : par exemple 9/2=4. 
2-1)De la même manière qu'au 1-1) on fait "Décaler à droite d'un cran"
2-1)"Décaler à droite de n crans "

Je continuerai plus tard si j'ai le temps.
Plutôt amusant sinon smile .
---------------
Bon ben j'ai plus de trop de temps là donc j'essaye le 3) rapidement :
on fait un XOR sur le premier bit de chaque nombre,c'est à dire le plus à droite,  (ça doit être permis sinon je vois pas comment faire), puis on test si le dernier résultat est 0 : Si oui alors on décale à droite et on continue sinon on arrête et on renvoie faux.

 #12 - 11-11-2010 22:28:12

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3327

arithmérique et informatique

Pas eu de temps libre pour la faire, que de devoir sad mais excellente, big_smile un jour certainement ça me servira!! smile
PS: j'ai tout compris sauf le 4 big_smile les modulos programme de TS spé maths je crois tongue si j'ai compris il sagit du reste de la division de deux nombres big_smile ou quelque chose dans le genre.
Merci, shadock smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #13 - 11-11-2010 23:05:53

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1470

arithlétique et informatique

Des bonnes réponses un peu partout mais aucun "carton plein".
Notations : & signifie ET, ^ signifie XOR, | signifie OU, <<n signifie "Décalage gauche de n crans", >>n signifie "Décalage droite de n crans"

Voici donc les réponses:
1.1) Multiplier par 2 en base 2, c'est comme multiplier par 10 en base 10: on ajoute un 0. Autrement dit, on fait x <<1
1.2) Pareil, on ajoute n zéros: x <<n

2.1) Dans la même logique, on divise par 2 en binaire en ôtant le dernier chiffre (il s'agit de division euclidienne, sans reste). Autrement dit, on fait x >>1
2.2) Pareil, on ôte n chiffres: x >>n

3) 0^0 = 0, 1^1 = 0, et 0^1 = 1. Autrement dit, si x=y, alors x^y=0. Donc on fait x^y et on regarde l'indicateur de résultat nul

4.1) Le modulo 2 d'un nombre en binaire, c'est comme le modulo 10 d'un nombre en base 10: le dernier chiffre. De plus, x&0 = 0 et x&1 = x.
Autrement dit, x&1 nous donne le modulo 2 de x

4.2) Celle-ci n'était pas évidente:
* la réponse la plus communément admise est de faire x & ((1<<n)-1). En effet, 1<<n, c'est 1 avec n zéros derrière, donc (1<<n)-1, c'est n fois le chiffres 1 et x&((1<<n)-1), c'est donc les n derniers chiffres de x (qui, comme en base 10 pour 10^n, correspondent au modulo en base 2 de 2^n)
* cependant, pour faire des opérations moins coûteuses, on peut procéder autrement: en effet, x^0 = x et x^x = 0; et de plus (x>>n)<<n correspond à x auquel on remplace les n derniers nombres par des zéros (pour s'en convaincre, en base 10, si je prends le quotient de x divisé par 10^n, puis que je rajoute n zéros, j'obtient un nombre similaire à x sauf que ses n derniers chiffres sont nuls). Du coup, x^((x>>n)<<n) vaut
- le i-ème bit de x pour les n derniers bits
- 0 pour ceux qui sont devant

5) Sans faire de boucle, le plus simple est de faire x & (x-1) et de regarder l'indicateur de résultat nul. En effet, si x est une puissance de 2, c'est un 1 avec n zéros derrière, et x-1 c'est n fois le chiffre 1. L'un ET l'autre, ça donne donc zéro.
2 remarques pour celle-ci:
- Elle indique que 0 est une puissance 2 (mais comme je ne parle pas des nombres négatifs dans l'énoncé, on peut oublier cette limitation)
- Elle fait une opération "-". Faire une boucle pour vérifier qu'on n'a que des zéros, suivi d'un 1 et plus rien ensuite ne fait pas de -, mais d'un autre côté la boucle peut être plus longue (car pour 2^n, on bouclera n+1 fois). De toutes les façons, les boucles ne font pas partie des opérations prévues par l'énoncé.

6) Je pense que le plus simple est de faire (a^b)&(a^b +1) et de regarder l'indicateur de résultat nul
J'ai beaucoup réfléchi au "(N ou M) xor (N xor M)=0" de Yanneck, je comprenais pas pourquoi ça marchait et en fait ça marche pas smile si deux bits valent 0, la condition reste vraie alors qu'elle devrait être fausse

Edit: Pour ce point 6, il y a en fait plus simple en utilisant une fonction binaire que je n'ai pas présenté dans l'énoncé: le NOR (qui vaut 1 si et seulement si les deux opérandes sont nulles)
Du coup, le test de résultat nul après (a NOR b) XOR (a AND b) devrait faire l'affaire:

Code:

A  B  A NOR B  A AND B  (a NOR b) XOR (a AND b)
0  0     1        0                1
0  1     0        0                0
1  0     0        0                0
1  1     0        1                1

 #14 - 12-11-2010 12:22:56

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

arithmétique et informayique

7) Comment inverser les valeurs de deux registres R1 et R2 quand aucun autre est disponible ?

 #15 - 12-11-2010 16:43:15

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

Arithmtéique et informatique

Déjà posé smile
Spoiler : [Afficher le message]
R1=R1+R2
R2=R2-R1
R1=R1-R2

 #16 - 12-11-2010 17:23:13

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

arithmétique et ibformatique

Héhé on peut faire bien mieux big_smile

 #17 - 12-11-2010 17:44:52

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

Arithmétiue et informatique

On peut faire pareil avec XOR. Est-ce à ça que tu penses? Il y a le même nombre d'instructions et sur les processeurs récents ça doit être équivalent.
Spoiler : [Afficher le message]
R1=R1 XOR R2
R2=R2 XOR R1
R1=R1 XOR R2


Sur les processeurs ARM on doit pouvoir faire mieux en utilisant les instructions spéciales du "barrel shifter" mais c'est un peu spécifique. Sur les processeurs graphiques aussi. Sur les Intel on doit pouvoir charger 2 32bits dans un 64 et faire un swap mais la aussi ce n'est pas générique...

 #18 - 12-11-2010 19:52:53

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

Ariithmétique et informatique

oui tout fait.
Le XOR a l'avantage par rapport à l'addition/soustraction de ne pas avoir de propagation de retenue et se font donc plus vite

 #19 - 13-11-2010 01:31:10

dhrm77
L'exilé
Enigmes résolues : 49
Messages : 3002
Lieu: Fanning Island-?-Lac Tele,Mali

Arithmétiqeu et informatique

scarta a écrit:

6) Comment savoir si la somme de deux nombres vaut 1 de moins qu'une puissance de 2?

Pourquoi ne pas faire comme dans 5), mais inversé:
soit les 2 nombres a et b:
faire x=a+b
faire ensuite (x & (x+1))==0


Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt

 #20 - 13-11-2010 22:00:39

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1470

Arithmétique e tinformatique

Ce que tu proposes fait 2 opérations arithmétiques et une logique, tandis que l'autre solution fait 2 opérations logiques et une arithmétiques, donc ça fait toujours un peu moins (d'après l'énoncé hein, je sais bien que les processeurs actuels sont capables de faire des additions en 1 temps d'horloge)
Ceci dit (a NOR b) XOR (a AND b) ==0 fait encore moins (3 opérations logiques)

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Riri, Fifi et ?

Sujets similaires

Mots clés des moteurs de recherche

Mot clé (occurences)
Enigmes arithmetiques (12) — Enigme arithmetique (10) — Enigmes arithmetique (5) — Enigme informatique (4) — Comment savoir si un nombre est une puissance de 2 (4) — Arithmetique et informatique (3) — Savoir si un nombre est une puissance de 2 (3) — Barrel shifter divise et multiplie par 2 (3) — Enigme logique informatique (2) — Les operations de decalage en informatique pourquoi faire (2) — A quoi reconnait ton qu un code cle est une puissance de 2 ? (2) — 5 puissance 1000 (2) — Arithmetique et informatiques (2) — Tester nombre puissance 2 (2) — Verifier si un nombre est une puissance de 2 (2) — Egnime informatique (2) — Comment savoir si binaire puissance de deux (2) — Puissance 2 (2) — Trouver si un nombre est une puissance de 2 (2) — Arithmetique et jeu (2) — Tester si puissance de 2 (2) — 1000 est il une puissance de 2 si oui laquelle (2) — Enigme arithmetiques (2) — Arthmetique enigme (1) — Informatique comparer la somme de 2 nombres (1) — Faire une enigme informatique (1) — Enigme arithmetique calcul (1) — Nombre decale a gauche enigme (1) — Binaire (1) — Le modulo identique sur deux nombres (1) — Comment calculer modulo 2 (1) — Reconnaitre si un nombre est un puissance de 2 (1) — Comment savoir si un chiffre est une pussance de (1) — Comment diviser une puissance par 2 (1) — Modulo operateur puissance de 2 (1) — Qcm culture informatique xor (1) — Enigme informatique jeu (1) — Comment faire une operation aritmetique en php avec ie (1) — Puissance de 2 est informatique (1) — Comparer deux nombres (informatique) (1) — Verifier nombre puissance de 2 (1) — Comment diviser un nombre par 2 en utilisant uniquement l operation moins l operation fois et le chiffre 2 ? (1) — Jeu d arithmetique rapide (1) — Determiner si un nombre est une puissance de deux (1) — Forum/viewtopic.php?id informatique (1) — Math arithmetiquee (1) — Determiner les deux derniers chiffres de 2 puissance 1000 (1) — Decouvrir arithmetiques (1) — Verifier que n est ube puissance de 2 (1) — Test si entier puissance 2 (1) — Petites enigmes arithmetiques (1) — Comment calculer le modulo 2 puissance n d un nombre c (1) — Code cle puissance de deux (1) — Comment calculer le modulo en informatique (1) — Comment savoir si un nombre est une puissance d un autre nombre? (1) — Division binaire xor (1) — Enigme arithmetique bases (1) — Comment reconnait on qu un nombre ecrit en code cle est une puissance de 2 (1) — Devinette informaticien reponse 64 (1) — Xor arithmetique (1) — Comme nt trouver de quel chiffre est multiplie une puissance (1) — La division euclidienne d un nombre binaire xor (1) — Jeux enigme informatique (1) — Enigme operations arithmetiques (1) — Comment calculer le xor de deux nombre binaire (1) — Verifier qu un nombre puissance de trois (1) — Informatique enigme (1) — Comment savoir qu un nombre est une puissance de 2 (1) — 17 puissance 35 (1) — Xor(1000110;101011) (1) — 1=2 enigme informatique (1) — Comment trouve le nombre de chiffres dans une puissance de 2 (1) — Comment calculer des modulo de puissance de deux (1) — (informatique) comparer deux nombres (1) — Que signifie enigma en informatique generale (1) — Enigmes arythmetiques (1) — Division binaire avec xor (1) — Probleme logisque arithmetiquee gratuit (1) — A gauche ou a droite du nombre informatique (1) — Enigme arthmetique (1) — Operateur logique =1 & >=1 enigme (1) — Instructions pour comparer deux nombres binaires (1) — Commen savoir qu un entier est une puissance de 2 (1) — Determiner si nombre est puissance 2 (1) — 123456789= 100 enigme arithmetique (1) — Comment diviser un nombre par une puissance de 2 (1) — De quelle facon peut on obtenir 100 en utilisant que 6 chiffres (1) — A quoi reconnait-on qu un nombre ecrit en code cle est une puissance de 2 (1) — Division arithmetique arm9 (1) — Arithmetique des nombres en informatique (1) — Determiner si a est la puissance de b (1) — Enigmes informatique (1) — X est une puissance de 2 divise (1) — Test nombre est une puissance de 2 (1) — De quelle facon peut on obtenir 100 en utilisant que 6 chiffres identiques et 2 operations (1) — Le nombre de chiffre de 2 puissance 1000 (1) — Comment tester si a est puissance de b (1) — Arithmetique informatique (1) — Modulo binaire puissance 2 (1) — Informatiqu comparaison de nombres binaires (1) — Eniigme arthemtrique (1) — Comment verifier si un nombre est de puissance 3 ou non (1) — Arrithmetique binaire (1) — Comment calculer une puissance quand on a aucun chiffre similaire (1) — Modeles architecture processeurs arm (1) — Arithmetique comment calculer une puissance (1) — Tester si un nombre est une puissance de 2 (1) — Comment savoir si c4est puissance de 2 (1) — Devinette sur l informatique (1) — Modulo 2 informatique (1) — Les operations arithmetique division modulo et quotient en latex (1) — Devinette informatique binaire (1) — Chiffres binaires (1) — Devinette informatique (1) — Comparer 2 puissance n-1 n! et n puissance n (1) — Comment calculer nombre modulo (1) — Comment verifier si un entier est une puissance de 2 en utilisant les boucles (1) — Tester si nombre puissance de 2 (1) — Comment calcule une division d une pussance de 2 par un puissance de 10 (1) — Valeur constante arm barrel shifter (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete