Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 10-11-2010 16:54:05

shadock
Elite de Prise2Tete
Enigmes résolues : 37
Messages : 2568

Prolème de divisibilité. (difficile)

Dans cette énigme, il sagit de réfléchir sur des méthodes qui sans calculatrice peuvent nous aider plus d'une fois.

1) Tout nombre est divisible par 1 donc pas de critères de divisibilités compliqués.
2) Tout nombre est divisible par deux ssi il est pair
etc... et vous connaissez la suite, jusqu'a 10 pour les nombre (1;2;3;4;5;6;8;9)

Question 1 :
A l'école on nous a tous (je pense) appris que pour savoir si un nombre est divisible par 7 il faut le faire à la calculatrice, mais dans un examen où vous n'en n'avez pas comment feriez vous :
Pour prouver que 321088491661 est divisible par 7? (le but étant de ne pas perdre de temps donc de le faire au plus vite)

Question 2
Prouver sans faire de division euclidienne que : 20196 est divisible par 11.

Question 3
Prouver que 48892423 est divisible par 137.

L'énigme est faite pour ceux qui ne save plus quoi faire en maths tongue elle est difficile pour ceux qui n'y connaisse pas grand chose (facile pour ceux qui connaisse des règles de division) ce sont les démonstration qui je pense sont difficiles, mais n'ayant je ne pense pas le niveau loin de là, je ne peux pas faire de démonstration, mais juste admirer ces résultalts surprenants.
Si vous n'arrivez pas à faire les démonstrations, mettez au moins la méthode ou les méthodes que vous utilisez.
NB : Pour le titre de l'énigme, je n'ai pas vraiment eu une bonne idée je ne sais pas si ça correspond à ce que vous pouviez attendre.
                                                                                           Shadock smile



Annonces sponsorisées :

"La goutte d'eau qui fait déborder le vase ferait mieux d'éteindre l'étincelle qui met le feu aux poudres." L. Baffie
  • |
  • Répondre

#0 Pub

 #2 - 10-11-2010 17:41:24

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1348

Problème de divisibilité. (diffcile)

Jette-donc un oeil ici: http://www.prise2tete.fr/forum/viewtopic.php?id=6424

D'après ce que je présentais sur cette page:
7 | 321088491661 ssi 7 | 32108849171,
3210884922,
321088502,
32108860,
3210886,
321118,
32151,
3220,
322,
42,
14, que 7 divise bien

20196 divisible par 11 ? oui vu que 6-9+1-0+2 = 0

48892423 par 137 ?
D'après l'autre page, on ôte le dernier chiffre, on enlève 4fois ce chiffre au nouveau nombre et on ajoute autant de 100aines:
48892423
4889530
488953
49183
5206
1096
685
548
822
274
On remarque que c'est le double de 137 pour s'arreter là

 #3 - 10-11-2010 17:44:00

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1092
Lieu: Au fond de l'univers

PProblème de divisibilité. (difficile)

Q1: il faut prendre le chiffre 321088491661
Doubler les unités ce qui donne 2 et faire 321088491661-2=321088491659
et refaire plusieurs fois l'operation jusqu'a obtenir un multiple de 7 simple

Q2
20196
2-0+1-9+6=0
0 multiple de 11, 20196 est divisible par 11

Q3
48892423
Les découper par tranche de 4
4889 2423
4889-2423=2466
2466 divisible par 137,

48892423 est divisible par 137


Un promath- actif dans un forum actif

 #4 - 10-11-2010 17:54:25

gabrielduflot
Expert de Prise2Tete
Enigmes résolues : 34
Messages : 609

Problème e divisibilité. (difficile)

Soit n un nombre naturel
n=Formule LaTeX : a\times 1000000000 +b\times 1000000 +c\times 1000 + d
on a 1000000 mod 7 = 1 mod 7 et 1000000000=1000 = -1 mod 7
n mod 7=-a+b-c+d mod 7

donc dans ce cas 32 108 849 661 mod ( 7) = -32+108-849+661mod(7)=-113 mod(7)=0 mod(7)
pour la divisibilité par 11 on fait la différence entre la somme des chiffre en place paire avec la somme des chiffres en place impaire et on regarde si c'est un multiple de 11

pour 20196
on a 2+1+6=9 et 9+0=9 donc 9-9=0 donc ce nombre est divisible par 11

pour la divisibilité par 137 n=a*10000+b
et 10000(137)=-1mod(137)
nmod(137)=-a+b mod(137)
pour 48892423
-4889+2423=-2466 (137)= -2466+1370+1730(137)=274(137)=0(137)

 #5 - 10-11-2010 18:42:28

engine
Professionnel de Prise2Tete
Enigmes résolues : 36
Messages : 349

problème de divisibilité. (diffivile)

Ah, parce ce que ça existe des énigmes faciles (autre que DM), ici ?


plouf

 #6 - 11-11-2010 01:29:38

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1104
Lieu: Jacou

pronlème de divisibilité. (difficile)

Bonsoir shadock,

Tous ces critères se démontrent (et se trouvent) de la même façon.
Par contre, tu demandes une "démonstration" et la ça demande un petit peu de technique (pas trop quand même).
L'idée est de couper le nombre en tranches de chiffres (de taille 1 éventuellement) et de faire un calcul sur ces tranches qui ne modifie pas la divisibilité: si le nouveau nombre est divisible l'original l'est aussi. Et idéalement on essaye que la divisibilité soit plus simple à démontrer sur le nouveau nombre. C'est ce que l'on fait pour le critère pour 9 par exemple: on ajoute tous les chiffres et si le nouveau nombre est divisible par 9 l'ancien l'était et bien sûr c'est plus simple à vérifier.

Voici le raisonnement pour 11 (le plus facile).
Pour savoir si un nombre est divisible par 11, on regarde à quoi il est congru modulo 11. Si on trouve 0, c'est qu'il l'est. On cherche donc une opération qui simplifie le nombre d'origine sans modifier sa "classe de congruence".

Tout nombre N peut s'écrire: Formule LaTeX : N=\sum{a_k10^k} en base 10, les ak en étant donc les chiffres. Formule LaTeX : 10 \equiv -1 [11] donc Formule LaTeX : N \equiv \sum{a_k(-1)^k} [11]

Que veut dire cette écriture? Cela veut dire que si on prend la somme des chiffres de rang pair en comptant à partir des unités moins la somme des chiffres de rang impair, le nouveau nombre obtenu appartient à la même classe de congruence modulo 11 et donc est divisible par 11 si et seulement le nombre original l'est. Cela nous donne le critère. Dans le cas de 20196: 6+1+2-9-0=0. 0 est divisible par 11, 20196 l'est donc aussi.

On fait de la même façon pour le critère par 7 mais le résultat est un peu plus compliqué. En effet les puissances de 10 modulo 7 donnent toutes des résultats différents: 1,3,2,-1,-3,-2 dans l'ordre pour 1, 10, 100, 1000, 10000, 100000 puis de nouveau 1,3,2,-1,-3,-2.
Le critère est donc de prendre les chiffres à partir des unités en multipliant chacun par 1,3,2,-1,-3,-2 respectivement et regarder si le nombre obtenu est divisible par 7.
Ex: 321088491661: 1*1+3*6+2*6-1*1-3*9-2*4  + 1*8+3*8+2*0-1*1-3*2-2*3=14
14 est divisible par 7, 321088491661 l'est aussi.
C'est le critère le plus connu pour 7. Mais on peut en utiliser un autre. En groupant les chiffres par 3.
On écrit donc: Formule LaTeX : N=\sum{a_k1000^k} en base 10, les ak en étant donc les groupes de 3 chiffres. Formule LaTeX : 1000 \equiv -1 [7] donc Formule LaTeX : N \equiv \sum{a_k(-1)^k} [7]
Cela nous donne un critère semblable à celui pour 11 mais en travaillant par groupes de 3 chiffres. Pour 321088491661, cela donne: 321088491661 est divisible par 7 ssi 661-491+88-321=-63 l'est. Ce critère est un peu plus difficile à utiliser à cause des additions et soustractions à 3 chiffres, mais permet d'éviter d'hésiter entre 1,3,2,.... Pour les 3 derniers chiffres, on peut utiliser le critère à 1 chiffre: 1,3,2, ...

Pour 137, toujours la même méthode. Les coefficients à utiliser sont les restes des divisions des puissances de 10 par 137: 1, 10, 100, 41, -1, -10, -100, -41.
48892423 est divisible par 137 ssi 3*1+2*10+4*100+2*41-9*1-8*10-8*100-4*41=-548 l'est. On remarque que on peut simplifier: on prend le nombre formé des 3 premiers chiffres (en partant de la droite) tels quels et on ajoute 41 fois le 4eme, puis on soustrait le nombre formé des 3 chiffres suivants et on soustrait 41 fois le suivant, ...
Pas très simple pour 137.
423+2*41-889-4*41=-548 divisible par 137.

On peut aussi appliquer la méthode du groupement par 4 chiffres: Comme Formule LaTeX : 10000 \equiv -1 [137], on scinde le nombre en paquets de 4 chiffres (depuis la droite) on prend le premier, on soustrait le suivant, on ajoute le suivant, ... et on regarde si le nouveau nombre, plus simple, est divisible par 137. Pour ce dernier nombre de 4 chiffres, on peut garder les centaines et ajouter 41 fois les milliers pour réduire encore le nombre.
Pour 48892423, on calcule: 2423-4889=-2466 puis 466+2*41=548.
ATTENTION: Le changement de signe ci-dessus modifie la classe de congruence mais pas le critère de divisibilité. En effet celui-ci revient à chercher si le nombre est dans la classe de 0 et dans ce cas, son opposé aussi.
A noter que pour ce critère, il vaut mieux connaître par coeur les premiers mutiples de 137....

J'espère que cela répond à tes questions.
A bientôt.

 #7 - 11-11-2010 07:02:15

franck9525
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1897
Lieu: UK

problème de divisibilité. (difdicile)

tout est ici que dire de plus??

J'ai appris que

Division par 4: il suffit que les dizaine et unité soient paires

je ne connaissais pas du tout la divisibilité par 7 et je sais pourquoi: ce qui est proposé n'est pas vraiment rapide, voire même plus complique que la 'vrai' division.

Division par somme des rangs paires = somme des rangs impairs
5275886 => 5+7+8+6=26=4+2*11 et 2+5+8= 15=4+11 => divisible par 11
20196=> 2+1+6=9 ok

Code:

  abcdef
  * 11
  -------
  0abcdef
+ abcdef0
  -------
  total

ce qui donne en prenant un rang sur deux abcdef =abcdef

division par 137: je ne fais pas cela souvent !


The proof of the pudding is in the eating.

 #8 - 11-11-2010 08:23:44

dylasse
Professionnel de Prise2Tete
Enigmes résolues : 21
Messages : 341

Poblème de divisibilité. (difficile)

Les règle de divisilité sont sur wiki, avec les bonnes explications !
Le principe de base est de remplacer un nombre "compliqué" par un nombre plus "simple" qui aura les mêmes critère de divisibilité. Si on recherche la divisibilité de A par p, et si A=B+ p * n, alors celà revient à chercher la divisibilité de B par p.

Je me suis amusé à chercher des critères "nouveaux" pour 7 et 11, pour 137, je sèche un peu !!!

Question 1 :
Pour prouver que 321088491661, j'essaierai de "réduire" progresivement ce nombre en "enlevant" des multiples de 7.

En partant de la droite : 1 est la terminaison de 21 dans la table de 7, je retranche donc 21 et je divise par 10, pour finalement obtenir 32108849164.
Je retranche 14 : 3210884915, puis 35 : 321088488, puis 28 : 32108846, puis 56 : 3210879, puis 49 : 321083 puis 63 : 32102,
puis 42 : 3206, puis 56 : 315, puis 35 : 28.

En fait, j'ai fait la division "par la droite" (j'obtiens 45869784523).

Autre technique : 98 est divisible par 7 donc si on écrit un nombre A=Ac * 100 + Au, A est divisible par 7 si et seulement si Ac*2+Au est divisible par 7.

On va donc faire la somme de chaque paquet de 2 chiffre pondéré de la puissance de 2 de leur rang.

Dans l'exemple, je fais la somme 61+2*16+4*49+8*88+16*10+32*32, où je remplace chaque terme par l'écart avec le multiple de 7 directement inférieur, pour avoir : 5+2*2+4*0+8*4+2*3+4*4=5+4+32+6+16, où je remplace chaque terme par l'écart avec le multiple de 7 directement inférieur : 5+4+4+6+2=21 : divisible par 7, youpie !

Sinon, on utilise la règle classique.

Question 2 :
Tant que l'on a un nombre avec 2 chiffres non nuls cote-à-cote, on va retrancher des multiples de 11 évidents pour avoir le maximum de 0 (et supprimer les 0 aux extrémités) :
20196 - 66 = 20130 qui devient 2013
2013 - 11 = 2002
Ensuite on sait que 1001 est multiple de 11, donc c'est OK.

D'une façon générale, la réduction par des multiples de 11 du type 1001, 100001, ..., 100...001 avec un nombre pair de 0, permet d'arriver soit à un multiple de 11 soit à : un nombre du type x0000..000y où le nombre de 0 est impair, qui n'est pas un multiple de 11 ou un nombre à 1 chiffre qui n'est pas un multiple de 11.

Sinon, on utilise la règle classique.

Question 3 :
On applique la règle.

Sinon, on multiplie 48892423 par 73, ce qui donne 3569146879, et on réduit par des multiples de de 10001 (=73 *137)
3569146879
2569046879
2169006879
2109000879
2101000079

ce qui au final ne donne pas grand chose wink

 #9 - 12-11-2010 13:39:02

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

Problèe de divisibilité. (difficile)

7 marche comme 11. 
1000 = -1 modulo 7   (10 = -1 modulo 11)
Donc on découpe un nombre en paquet de 3 chiffres, on additionne les paquet impairs et on retranche les paquets pairs.
On réitère tant que le nombre est plus grand que 1000.  Ensuite une division par 7 triviale termine le test
Plus généralement, si 10^k = -1 modulo n, a = a0(10^k)^0 + a1(10^k)^1 + a2(10^k)^2 + ...  = a0 - a1 + a2 - ... modulo n

137 marche comme 9
10000 = 1 modulo 137
Donc on découpe un nombre en paquet de 4 chiffres et on additionne ces paquets. On réitère tant que le nombre est plus grand que 10000.  Ensuite une division par 137 triviale termine le test
Plus généralement, si 10^k = 1 modulo n, a = a0(10^k)^0 + a1(10^k)^1 + a2(10^k)^2 + ...  = a0 + a1 + a2 + ... modulo n


1) 661 - 491 + 088 - 321 = -63 = -9 * 7 = 0 modulo 7 OK c'est un multiple

2) 6 - 9 + 1 - 0 + 2 = 0 = 0 modulo 7 OK c'est un multiple

3) 423 + 892 + 48 = 1 363 = 10 * 137 - 7 = -7 modulo 137 KO c'est pas un multiple

 #10 - 15-11-2010 19:18:33

Yannek
Passionné de Prise2Tete
Enigmes résolues : 10
Messages : 60

problème de divisibilité. (fifficile)

(1) 1000=-1[7] donc
321088491661=-321+088-491+661=29+4-1-39=-7=0[7]
(2) 10=-1[11] donc
20196=2-0+1-9+6=0[11]
(3) 10000=1[137] donc
48892423=-4889+2423=-2466=-1096=137*2=0[137]

J'imagine que ce sont des choses plus subtiles qui sont attendues...

 #11 - 15-11-2010 20:56:41

shadock
Elite de Prise2Tete
Enigmes résolues : 37
Messages : 2568

Problème dee divisibilité. (difficile)

Je vois pour le moment que j'ai tapé plustôt haut, mais bravo à tous (rivas aime bien faire les choses dans la longueur wink smile). Allé encore deux semaines et pif et paf et pof "mathématiques pour les nuls 7" smile


"La goutte d'eau qui fait déborder le vase ferait mieux d'éteindre l'étincelle qui met le feu aux poudres." L. Baffie

 #12 - 16-11-2010 11:40:26

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1104
Lieu: Jacou

Problème de divisibilité .(difficile)

Ce n'est pas tellement que j'aime la longueur (et d'ailleurs j'ai moins de temps maintenant), mais j'ai essayé d'expliquer la méthode en détail. Cela va bien au-delà de la divisibilité ce problème...
Merci à toi d'avoir posé cette énigme.
smile

 #13 - 16-11-2010 22:31:03

shadock
Elite de Prise2Tete
Enigmes résolues : 37
Messages : 2568

problèle de divisibilité. (difficile)

Mais de rien @rivas et merci à tous il fallait trouver que tous les nombres proposés étaient divisibles par ce qui était demandé smile Je n'ai plus qu'a comprendre les demonstrations tongue


"La goutte d'eau qui fait déborder le vase ferait mieux d'éteindre l'étincelle qui met le feu aux poudres." L. Baffie
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 40 moutons, ils meurent tous sauf 18, combien en reste-t-il ? =

Mots clés des moteurs de recherche

Mot clé (occurences)
Probleme de divisibilite (23) — Probleme sur la divisibilite (15) — Problemes sur la divisibilite (10) — Probleme divisibilite (9) — Divisibilite par 7 (8) — Problemes de divisibilite (5) — Enigme quel est le chiffre des unites de 2013 puissance 2013enigme quel est le chiffre des unites de 2013 puissance 2013enigme quel est le chiffre des unites de 2013 puissance 2013 (4) — 7puissance2013 (4) — Simplifier 1001/100001 (4) — Probleme divisibilite 11 (3) — Diviser par 7 11 13 (3) — Divisible par 31 (3) — Problemes divisibilite (3) — Divisibilite (3) — Enigmes difficiles (3) — Situation probleme divisibilite (3) — Probleme de divisiblite (3) — Diviser par 7 (2) — 7 puissance 2013 - 7 divisible par 48 (2) — Probleme criteres de divisibilite (2) — 3puissance2013 (2) — 2 puissance n divisible par 7 (2) — Problemes criteres de divisibilite (2) — Simplifiez 1001/100001 (2) — Montrer que 7 puissance 2013 - 7 divisibilite (2) — Prouvez le critere suivant : un entier naturel est divisible par 11 (2) — Regles de divisibilite (2) — Enigme divisibilite (2) — Problem de divisibilite (2) — Divisibilite et simplification du nombre 1010101010 niveau 4e (2) — Divisibilite d un nombre contenant des 1 et des 0 (2) — Problemes sur les criteres de divisibilite (2) — Probleme ouvert divisibilite (2) — Demonstration divisible par 137 (2) — Divisibilite probleme (2) — Je divise par 7 puis par 11 et par 13 (2) — Comment reconnaitre un nombre divisible par 4 sans poser l operation (2) — Critere de divisilites (2) — Quel est le chiffre des unites de 17 puissance 2013 (2) — Divisibilite par 7 demonstration (2) — Regle de divisibilite par 7 (2) — Divisibilite par 137 (2) — Probleme de math criteres de divisibilite nombre magique (2) — Regle de divisibilite (2) — Problemes 6 divisibilite (2) — La divisibilite problemes (2) — Des problemes sur la divisibilite par 8 (2) — Montrer que 7 divise (2) — Les puissances de n divisible par 11 (1) — Enigme : plus rapide que la calculatrice (1) — 19n-12n divisible par 7 2 (1) — Division 711 divise par 9 (1) — Montrer que le nombre n=1 puissance 2013 + 2 puissance 2013 + 3 puissance 2013 est divisible par 7 (1) — De?montrer sans effectuer de division que 220 ?1 est divisible par 31. (1) — Examen critere de divisibilite (1) — Division par demonstration division par zero (1) — Probleme de divisibiliter 6 annee (1) — Division par 7 11 et 13 (1) — Criteres de divisibilite et problemes (1) — Divisibilite problemes (1) — Probleme de math de divisibilite (1) — 2466 est il divisible par 9 (1) — Par quel chiffre se termine 2 puissance 2013 (1) — Divisibiilte par 11 (1) — Probleme avec des divisions difficile (1) — Je cherche une regle pour savoir si un nombre est un multiple de 4 (1) — Math problemes de multiple et de divisibilite (1) — Expiquer pourquoi le nombre 2448 est divisible par 48 (1) — Quels sont les restes possibles de la division par 7 (1) — Division euclidienne 2508 divise 26 (1) — Comment resoudre la somme de 1+2+3+...+10000 (1) — Demontrer que le produit n(n^6-1) est divisible par 42 quel que soit le naturel n (1) — Le plus grand nombre a quatre chiffres differents divisibles par 2 et 3 et 5 (1) — Expliquer la divisibilite mathematique (1) — 423+n%27est+pas+divisible+par+7+r%c3%a9diger (1) — Divibilite par 7 (1) — Determine le chiffre des unites de 17puissance 2013 (1) — Mettre en place un critere de divisibilite de 11 (1) — Nombres divisibles par 689 (1) — Critere de divisibilite jusqu a 20 (1) — Probleme critere divisibilite (1) — Faire une division a deux chiffre pour les nuls (1) — Probleme simple de divisibilite (1) — Comment reconnaitre un nombre divisible par onze (1) — Probleme sur critere de divisibilite (1) — La divisibilite par 137 (1) — Math probleme sur divisibilite (1) — Prouvez le critere suivant : un entier naturel est divisible par 5 (1) — Probleme a division complique (1) — Enigme avec des chiffre dificil (1) — Enigme somme (1) — Divisibilite par 10-100-1000 (1) — Petits problemes sur divisibilite (1) — La division probleme difficile (1) — Enigme sur critere de divisibilite (1) — Etablir que n est multiple de 11 si a0 ? a1 + ... + (?1 (1) — Probleme de math division 7 11 et 13 (1) — Probleme sur les criteres de divisibilite (1) — Probl?mes divisibilit? (1) — Si on y ajoute 7 il est divisible (1) — Regle du multiple de 7 (1) — Utiliser 5 chiffres (1) — Critere de divisibilite par 17 classe de 4e (1) — Pourquoi 2448 est divisible par 48 (1) — Je suis un nombre de 3 chiffres divisible a la fois par 5 et par 9 mais pas divisible par 10 (1) — Probleme difficile sur division (1) — Criteres de divisibilite par 11 classe de 6 e (1) — Tout les divisible de 7 (1) — 3^2n+2^(6n-5) divisible par 11 (1) — Enigme sur les divisibilite (1) — Problemes a resoudre criteres de divisibilite (1) — Probleme difficile division (1) — Demontrer que 1puissance2013+2puossance2013 est.divisible par 5 (1) — Egnigme critere de divisibilite (1) — Problemes avec criteres de divisilite. (1) — Problemes sur la division difficile (1) — Quels sont les reste possibles de la division de 3 puissance n par 11 (1) — Prouver que 321088491661 est divisible par 7 (1) — Probleme ecrit sur divisibilite (1) — Enigme nombre dix chiffres divisible divisibilite par 11 (1) — Les criteres de divisibilites enigme (1) — Probleme critere de divisibilite (1) — Demonstration divisibilite par 7 (1) — Maths 6 eme la divisibilite probleme difficiles (1) — Un probelme tres dififcile (1) — 321 est multiple de 7 (1) — Le plus grand nombre a trois chiffre divisible par deux (1) — Montrer que n(n^6-1) divisible par 42 (1) — Division euclidienne enigme (1) — Enigmes sur la divisibilite d un nombre de 9 chiffres dont le chiffre des unites est divisible par 9 (1) — 12 diviser par 2 donne 7 (1) — Examen regles de divisibilite (1) — Comment savoir si un nombre est un multiple de 7 (1) — Divisilit?s diversses (1) — Nombre divisible par 7 (1) — Probleme de divisibilite par 2 3 4 (1) — Demonstration divisibilite par onze (1) — Pourquoi en divisant un nombre de centaine de mille par 1001 je retrouve le meme resultat (1) — Divisibilite facile (1) — Prouvez le critere suivant : un entier naturel est divisible par 11 lorsque la difference entre la somme des chiffes des rangs impair et la somme des chiffres de rang pair a partir de la droite est un multiple de 11 (1) — Je suis un nombre de quatre chiffres non divisibles (1) — 1) quel est le chiffre des unites de 17 puissance 1 17^2 17^3 17^4 17^5 de 17^6 ? 2) determiner le chiffre des unites de 17 puissance 25 et de 17 puissance 35. (1) — 100001 multiple de 11 (1) — Probleme avec nombres divisible (1) — Probleme sur les divisibilites (1) — Critere de divisibilite par 11 et soustractions (1) — Devinettes sur les divisions euclidiennes(divisiblite) (1) — Expliquer pourquoi lorsqu on ajoute ou soustrait 4 nombres le plus grand nombre est a et le plus petit est b (1) — Test critere de divisibilite 4eme (1) — Probleme avec chiffre divisible (1) — Poser la division 1/11 (1) — Congruence 2puisance 6n (1) — Ex difficile de divisibilite (1) — Probleme sur nombre divisible (1) — Probleme avec division complique (1) — Probleme niveau difficile (1) — Divisibilite par 2 problemes (1) — Demonstration des regles de divisibilite (1) — Par quoi 423 est il divisible? (1) — Nombre divisible par 7 11 et 13 enigme (1) — Probleme divisble (1) — 1111...1 n fois divisible par 11 demonstration (1) — Critere de divisibilite par 7 demonstration (1) — Bossa in beatles (1) — Enigme: trouver un nombre impair inferieur a 100 compose de 3 mots le chiffre des dizaines est divisible par 2 la somme du chiffre des dizaines et des unites est inferieur a 10 (1) — Trouver le chiffre des unites de 2 puisance 2013 (1) — Problemes criteres divisibilite (1) — Regles de divisibilite par 137 (1) — Puissance de 10 divisibilite (1) — Comment trouver le critere de divisibilite du chiffre 5 (1) — Demonstration divisibilite par 13 tranche de 3 chiffres (1) — Situation mobilisatrice critere de divisibilite (1) — 7642 divise par 31 (1) — Pb de math 2puissance 2013 quelle unite aide (1) — Enigme avec des groupes de trois chiffre (1) — Lorsque le nombre acceptee est divisible par 11 (1) — Chiffre des unites d une puissance (1) — Divisibilite par 11 probleme (1) — Probleme sur les critere de divisibilite (1) — Si on ajoute 5 divisible par 5 si on ajoute 7 divisible par 7 (1) — Nombre divisible par 2 et 3 mais pas par 4 (1) — Nombre moins somme des chiffres du nombre divisible par 9 (1) — Divisions de 3210.2 par 16 (1) — Suite divisible de 1a 9 enigme (1) — Le but de ce probleme est de determiner le chiffre des unites de 7 puissance 2013 (1) — Methode pour savoir si un nombres est divisible par 4 sans poser l operation (1) — 2013 est il divisible (1) — Divisibilite par 7 11 13 1001 (1) — Multiple de 137 (1) — Abcde divisibilite par 13 par tranche demonstration (1) — Probleme de divison difficile (1) — Probleme sur les divisions assez difficiles (1) — Division par 7 11 13 (1) — Chiffre des unites de 7 puissance 2013 (1) — Probleme ouvert divisible 12 (1) — Expliquer pourquoi un nombre est divisible par 11 (1) — Utiliser les divisibles dans un probleme (1) — Mathematiques regles de divisibilites (1) — Regle des multiple de 11 demonstration (1) — Les regles de divisibilite demonstration (1) — La divisibiliter (probleme) (1) — Probleme ouvert criteres de divisibilite (1) — Math puissance 4eme 3puissance2013 (1) — Criteres de divisibilites par tranche (1) — Sommes des angles 220° (1) — Enigme calculatrice a et b (1) — Il faut trouver un nombre compose de 9 chiffres de 1 a 9 tous differents tel que le 1er chiffre est divisible par 1 les 2 premiers div par 2 les 3 premiers par 3 les 4 premiers par 4 juska 9 . (1) — Divisibilite par onze (1) — Problemes difficiles divisions (1) — Critere de divisibilite probleme enigme (1) — Pif et paf dm de math (1) — 100 0001 multiple de 11? (1) — Montrer que puissance est divisible par 7 (1) — Pourquoi 2448 est divisible par 48 (1) — Problemes enigmes difficiles (1) — Le nombre divisible par 2345678910 (1) — Montrer que 7^2013 - 7 est divisible par 48 division euclidienne (1) — Devinette division euclidienne terminal (1) — Divisibilite par 7 d une puissance (1) — Critere divisibilite probleme (1) — 17 puissance 25 (1) — Pourquoi 1001 est divisible que par 143 (1) — Mathematiques:critere de divisilite. (1) — Pb math nombres divisible (1) — 1000 n ai pas un divisible de 9 pourquoi (1) — Probleme divisibilite dans n (1) — On considere 7 48 divisible par 2 (1) — Somme des chiffres de 137n (1) — Math:6eme:quel est le critere de divisibilite pour la table de 11 (1) — Regle multiple de onze (1) — Montrer que pour tout naturel n le nombre 5^2n - 14^n est divisible par 11 (1) — Dm sur maths et magie divisible par neuf (1) — Resoudre le probleme suivant : son chiffre des centaines est le doubles des unites et son chiffe des des dizaines est la somme des deux autres (1) — Trouver un nombre de 9chiffres comportant les chiffres de 1 a 9 tels que les deux premiers chiffres forment un nombre divisible par 2 les3 premiers par3 etc (1) — Pourquoi 1000 n ai pas un divisible de 9? (1) — Probleme classique de divisibilite (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete