Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 16-10-2017 15:16:28

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

Le jeu du plus fotr

Hello,
Voici un petit calcul de probabilités, pour ceux qui s'ennuient (je me suis ennuyé moi-même big_smile big_smile )

Donc, voilà, on a un jeu, avec un dé à n faces.
Le premier joueur lance le dé. Le second lance le dé
- s'il fait moins il a perdu
- s'il fait pareil ou plus, alors le jeu continue avec le joueur 1 qui doit faire pareil ou plus, etc...
Règles très simples donc.

Allez, maintenant on rigole un peu:

* Probabilité de gagner pour le joueur 1 si n=2 (disons que c'est un pile ou face, avec pile qui vaut moins que face)
* Probabilité de gagner pour le joueur 1 avec un dé classique (n=6)
* Probabilité de gagner pour tout n tongue

Et pour éviter les codeurs fous, probabilité pour le joueur 2 de gagner quand n --> +infini
La case réponse valide le résultat exact de cette limite sous sa plus petite expression - d'où le joueur 2 demandé, pour le joueur 1 on aurait évidemment 1-cette limite, et il y aurait alors les partisans du 1-a/b vs ceux du (b-a)/b



Annonces sponsorisées :

 
Réponse :
  • |
  • Répondre

#0 Pub

 #2 - 16-10-2017 16:32:24

caduk
Professionnel de Prise2Tete
Enigmes résolues : 45
Messages : 240

Le ju du plus fort

Bonjour,
probabilité de gagner une manche:
p = (n^2 - n)/n^2
probabilité pour 1 de gagner:
p + (1-p)(1-p)p  + ... + (1-p)^2n + ... = p1/(1-(1-p)^2) = 2n^2(n^2-n)/(3n^4-2n^3-n^2) qui tend vers 2/3.
Évidemment, ni 1/3, ni 2/3 ne valide la case réponse...

 #3 - 16-10-2017 17:43:17

Ebichu
Professionnel de Prise2Tete
Enigmes résolues : 49
Messages : 494

Le jeu du lpus fort

Salut Scarta,

je vois les choses avec une chaîne de Markov à n+1 états : les n premiers états, numérotés 1 à n, correspondent au résultat du dernier joueur (si le dernier joueur a obtenu 4, on est dans l'état 4), et il y a en plus un état puits vers lequel se dirige le joueur qui a perdu.

Avec cette approche, on voit que la probabilité que le joueur placé dans l'état k gagne est [latex]1-\left(\frac{n}{n+1}\right)^{n+1-k}[/latex]. En particulier, la probabilité que le premier joueur (qui commence dans l'état 1) gagne est [latex]1-\left(\frac{n}{n+1}\right)^{n}[/latex], celle que ce soit le deuxième joueur est donc [latex]\left(\frac{n}{n+1}\right)^{n}[/latex].

En passant au logarithme, on obtient que la limite de cette expression est 1/e.

 #4 - 16-10-2017 18:54:42

golgot59
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1415
Lieu: Coutiches

Le jeu du plu fort

EDIT (correction du calcul de la limite) :

Salut !
Je trouve pour la situation 1 :
Le joueur gagne avec une proba de 0.5^2+3*0.5^4+5*0.5^6... dont la limite fait 5/9.
Le joueur 2 avec une proba de 2*0.5^3+4*0.5^5+6*0.5^7... dont la limite fait logiquement 4/9.

Le reste... Je galère !

 #5 - 16-10-2017 20:48:30

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

le heu du plus fort

Bonne réponse d'Ebichu. J'avais aussi le même "outil", mais je me suis quand même fait les calculs de séries à la main, histoire de me dérouiller le cerveau tongue
@Caduk, ta 1ère formule n'est pas bonne.
@Golgot: dans un jeu aussi déséquilibré, on s'attend au moins que le joueur 1 gagne plus souvent smile

 #6 - 16-10-2017 22:31:23

enigmatus
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 460

Le jeuu du plus fort

Bonsoir,
Voici ce que j'obtiens :

Code:

Pour N=2 : P = 5/9          = 0.555556
Pour N=6 : P = 70993/117649 = 0.603431

 #7 - 16-10-2017 22:38:34

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

Le jeu du pluss fort

C'est bien ça. Reste plus qu'à trouver la formule générale (et à prouver le tout)

 #8 - 16-10-2017 23:52:29

caduk
Professionnel de Prise2Tete
Enigmes résolues : 45
Messages : 240

le jeu du pluq fort

oui, c'est  (n^2 - n)/2n^2, j'ai oublié le 2, mais je l'avais pris en compte dans mon calcul...
Mais en fait j'avais mal lu l'énoncé, je n'avais pas compris que le 3ème lancer était comparé au 2ème, je pensais que c'était un système de manches, je regarde ça plus tard...

 #9 - 16-10-2017 23:59:30

enigmatus
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 460

Le jjeu du plus fort

Suite du #6.

Pour N=6, j'obtiens cette formule, que je généralise sans vergogne et sans l'avoir démontrée :

Code:

P = 1 - (N/(N+1))**N

qui a pour limite 1 - 1/e lorsque N tend vers l'infini.

Édité :
Jouer avec un dé à nombre infini de faces revient par exemple à choisir un nombre réel de manière uniforme sur le segment (0,1[

 #10 - 17-10-2017 09:32:29

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

le jeu du plus forr

@enigmatus la formule est bonne.
Par contre, je dirais plutôt un rationnel qu'un réel dans ton analogie (sinon R serait dénombrable tongue)
Je me demande d'ailleurs si formellement ça change quelque chose ou pas avec un réel. Faudrait que je vérifie.

 #11 - 17-10-2017 17:06:42

enigmatus
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 460

Le jeu ddu plus fort

scarta #10 a écrit:

Par contre, je dirais plutôt un rationnel qu'un réel dans ton analogie (sinon R serait dénombrable)

En toute rigueur, oui, mais je ne pense pas que ça change quelque chose, car les probabilités sont ici des rapports de longueurs de segments.

 #12 - 20-10-2017 12:23:54

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

le jeu du plud fort

Bravo à ceux qui auront trouvé 1/e comme limite.
On peut utiliser les chaines de Markov, ou pas. Pour ceux qui ne connaissent pas, voici la méthode calculatoire.

J'ai un dé à 6 faces.
La probabilité de gagner, sachant que je viens de tirer 6, vaut: p = 5/6 + (1-p)/6
Explication: j'ai 5 chances sur 6 de gagner, ou bien l'adversaire peut faire 6 aussi, et aura lui-même une probabilité p de gagner, donc moi de 1-p.
Résultat: p = 6/7
La probabilité de gagner, sachant que je viens de tirer 5, vaut: p = 4/6 + (1-p)/6 + 1/7 * 1/6
Explication: j'ai 4 chances sur 5 de gagner, ou bien l'adversaire peut faire 5 aussi, et aura lui-même une probabilité p de gagner, donc moi de 1-p; il peut enfin faire 6 et avoir une probabilité 6/7 de gagner, donc moi de 1/7.
Résultat: p = 36/49 = (6/7)²

Tiens, tiens...
En continuant, on voit que les suivants sont (6/7) puissance 3, 4, 5 et 6

On va généraliser. J'ai un dé à n faces
Proposition: La probabilité de gagner sachant que je viens de tirer k est [latex](\frac{n}{n+1})^{n+1-k}[/latex]
Démonstration, par récurrence "à l'envers"
- pour k = n, on a une probabilité [latex]p = \frac{n-1}{n} + \frac{1-p}{n}[/latex], d'où [latex]p = \frac{n}{n+1}[/latex]
- si la proposition est vraie pour toute valeur entre k+1 et n, montrons qu'elle l'est pour k.
[TeX]p = \frac{k-1}{n} + \frac{1-p}{n} + \frac{1}{n}\sum_{i=1}^{n-k}(1-(\frac{n}{n+1})^{i})[/TeX]
Explication: k-1 chances sur n de gagner, 1-p si l'adversaire tire k aussi, et 1-p' pour chaque p' (déjà calculé) de k+1 à n
[TeX]n.p = k-1 + 1-p + \sum_{i=1}^{n-k}(1-(\frac{n}{n+1})^{i})[/TeX]
[TeX](n+1).p = k + n - k - \sum_{i=1}^{n-k}((\frac{n}{n+1})^{i})[/TeX]
[TeX](n+1).p = n - \frac{n}{n+1}\frac{1-(\frac{n}{n+1})^{n-k}}{1-\frac{n}{n+1}}[/TeX]
[TeX](n+1).p = n - n + n (\frac{n}{n+1})^{n-k}[/TeX]
[TeX]p = (\frac{n}{n+1})^{n-k+1}[/TeX]
CQFD

Donc, la probabilité de gagner sachant que j'ai tiré un k est de [latex](\frac{n}{n+1})^{n-k+1}[/latex]

La probabilité de gagner, tout court, est, au choix
1) [latex]\sum_{k=1}^n{\frac{(\frac{n}{n+1})^k}{n}}[/latex]
[TeX]= \frac{1}{n+1}.\frac{1-(\frac{n}{n+1})^n}{1-\frac{n}{n+1}}[/TeX]
[TeX]= 1-(\frac{n}{n+1})^n[/TeX]
2) autre option, plus jolie: si je commence, c'est comme si l'autre avait tiré 1 juste avant. La probabilité qu'il gagne dans ce cas est de [latex](\frac{n}{n+1})^n[/latex] comme on l'a vu plus haut, donc la probabilité qu'il perde, et que je gagne, vaut [latex]1-(\frac{n}{n+1})^n[/latex]

La probabilité pour que celui qui ne commence pas gagne est donc [latex](\frac{n}{n+1})^n[/latex].

Pour un pile-ou-face, ça nous donne 4/9.
Pour un dé, 46656/117649, soit 39% à peu près.

Et enfin, la limite de [latex](\frac{n}{n+1})^n[/latex] étant [latex](\frac{1}{e}[/latex], la probabilité du joueur 2 de gagner tend vers 36,7879%

 #13 - 21-10-2017 09:39:48

Bastidol
Habitué de Prise2Tete
Enigmes résolues : 49
Messages : 41

le jru du plus fort

Bonjour les matheux,

Désolé de ne pas participer.
Pour moi ce n'est pas un cadeau.
Je garde des probabilités un mauvais et lointain.souvenir  sad

 #14 - 21-10-2017 16:33:55

enigmatus
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 460

le jeu du plus dort

Bastidol a écrit:

Je garde des probabilités un mauvais et lointain.souvenir

Ce n'est pas de chance… smile

 #15 - 21-10-2017 18:07:24

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,710E+3

le jeu du pkus fort

Moi j'en garde un bon souvenir (amer) , synonyme de flopée de mauvaises notes, car même quand le "bon sens" suffit et donne la bonne réponse, le prof attend des formules ignobles et te descend en flammes. Parfois, le "bon sens" se trompe (ce sont même de jolis problèmes) ... mais souvent, la formule ignoble peut être traduite en mots simples que les "Mathématiciens" réprouvent à tort, je ne sais pas pourquoi, car la mise en mots est plus souvent proche de la compréhension que les formules apprises.

 #16 - 21-10-2017 18:48:31

emmaenne
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3072
Lieu: Au sud du Nord

le jeu du plus dort

Bastidol a écrit:

Bonjour les matheux,

Désolé de ne pas participer.
Pour moi ce n'est pas un cadeau.
Je garde des probabilités un mauvais et lointain.souvenir  sad

+1


Dans le cadre de la quinzaine du beau langage, ne disez pas disez, disez dites. (Julos Beaucarne)

 #17 - 21-10-2017 21:15:46

ash00
Sage de Prise2Tete
Enigmes résolues : 49
Messages : 5,668E+3

L jeu du plus fort

Moi, je laissais la chance aux autres de développer... pour une fois ^^

 #18 - 21-10-2017 22:44:09

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1533

le heu du plus fort

Bon j'en avais un autre sur le feu, ça fait moitié probabilités et moitié logique. Ça en fera pour tous les goûts.
Je finis d'écrire l'énoncé et ça sera prêt smile

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Tim, Tam et ?

Sujets similaires

Sujet Date Forum
21-10-2009 Enigmes Mathématiques
P2T
Ca c'est fort! par PRINCELEROI
03-07-2013 Enigmes Mathématiques
P2T
D'ou ca vient ? par Damnation
13-10-2009 Enigmes Mathématiques
P2T
Equation par salehseghiri
15-06-2009 Enigmes Mathématiques
20-11-2015 Enigmes Mathématiques
P2T
Gâteau 98 par Vasimolo
07-05-2015 Enigmes Mathématiques
20-12-2007 Enigmes Mathématiques
14-11-2010 Enigmes Mathématiques
P2T
Et l'echelle choit II par gabrielduflot
28-10-2009 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete