Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 04-04-2010 14:47:28

menfou
Amateur de Prise2Tete
Enigmes résolues : 0
Messages : 1

Pourquoi 6,5 x 6,5 > 6 x7

Quelqu'un connait une règle de maths qui pourrait expliquer pourquoi :


6,5 x 6,5 > 6 x 7



Annonces sponsorisées :
  • |
  • Répondre

#0 Pub

 #2 - 04-04-2010 16:27:31

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Pourqui 6,5 x 6,5 > 6 x 7

[TeX](a+b)(a-b) = a^2-b^2[/TeX]
Donc [latex](a+b)(a-b) < a^2[/latex]

Remplace a par 6,5 et b par 0,5 et tu verras ce que ça donne smile


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #3 - 04-04-2010 16:51:16

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4733

Pourquoi 6,5 x 6,5 > 6 x 7

Plus généralement 6,5 est la moyenne arithmétique de 6 et 7 et[latex] \sqrt{42}[/latex] la moyenne géométrique des mêmes nombres . On démontre que pour des nombres positifs la moyenne arithmétique est toujours supérieure ou égale à la moyenne géométrique ( même pour plus de deux nombres ) .

ici : [latex]\frac{6+7}{2}\geq\sqrt{6\times 7}[/latex] donc [latex]6,5\times 6,5 \geq 6\times 7[/latex] .

Si ça t'interesse tu peux regarder aussi du côté des moyennes quadratiques et harmoniques .

Vasimolo

 #4 - 04-04-2010 20:28:40

scrablor
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 931

Pourqui 6,5 x 6,5 > 6 x 7

Variante : le rectangle de périmètre P donné et qui a l'aire la plus grande possible est le carré de côté P/4.


Celui qui fuit les casse-tête ne vaut pas un clou.

 #5 - 04-04-2010 20:31:37

emmaenne
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3057
Lieu: Au sud du Nord

Pourqoi 6,5 x 6,5 > 6 x 7

menfou a écrit:

Quelqu'un connait une règle de maths qui pourrait expliquer pourquoi :


6,5 x 6,5 > 6 x 7

avec un pseudo pareil ce n'est pas la peine de répondre, il s'en fout



------------------------------------------------------------------>[]


Dans le cadre de la quinzaine du beau langage, ne disez pas disez, disez dites. (Julos Beaucarne)

 #6 - 04-04-2010 20:52:42

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Pourquoi 6,5 x 6,5 > 6 x

Désolé les deux gros matheux de la mort, mais mon explication est beaucoup plus simple, surtout si ce "joueur" est en seconde lol


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #7 - 05-04-2010 00:05:53

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4733

Poruquoi 6,5 x 6,5 > 6 x 7

Je trouve aussi que la réponse de scrablor est trop compliquée pour un élève de seconde et je ne parlerai même pas de celle d'emmaenne ( complètement hermétique ) big_smile

Vasimolo

 #8 - 05-04-2010 10:38:54

scrablor
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 931

Pourquoi 6, x 6,5 > 6 x 7

N'exagérons rien. Il suffit de dessiner un rectangle de 6x7, de couper une bande de 6x0,5 et de l'accoler au côté adjacent. J'ai appris cela en 5ème et si un élève de 2nde ne comprend pas, c'est qu'il est déjà trop tard et que plus rien ne le motive.


Celui qui fuit les casse-tête ne vaut pas un clou.

 #9 - 05-04-2010 10:49:36

piode
Cacografe de Prise2Tete
Enigmes résolues : 28
Messages : 1680
Lieu: Sur le dos d'une autruche

ppurquoi 6,5 x 6,5 > 6 x 7

J'ai appris cela en 5ème et si un élève de 2nde ne comprend pas, c'est qu'il est déjà trop tard et que plus rien ne le motive.

lol moi je l'ai appris quand 3eme et encore ^^


"Être une enzyme avec fonction hydrolyse, mais ne pas savoir comment si prendre ..."

 #10 - 05-04-2010 11:08:14

scrablor
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 931

Pourqui 6,5 x 6,5 > 6 x 7

J'exagère peut-être ou ma mémoire s'égare mais, dans mon petit collège, mon prof de maths assurait aussi l'heure de travaux manuels... On n'y faisait que de la géométrie... constructions à la règle et au compas, confection de solides, etc. Ça m'a sûrement servi en maths cool


Celui qui fuit les casse-tête ne vaut pas un clou.

 #11 - 23-09-2010 20:11:21

TiLapiot
Expert de Prise2Tete
Enigmes résolues : 16
Messages : 851
Lieu: au terrier ;^)

Pourqoi 6,5 x 6,5 > 6 x 7

Posons [latex]x[/latex]=6.

À gauche de l'inégalité, on a ([latex]x[/latex]+½)²=[latex]x[/latex]²+[latex]x[/latex]+¼
et à droite, on a [latex]x[/latex]([latex]x[/latex]+1)=[latex]x[/latex]²+[latex]x[/latex]

Donc l'inégalité se vérifie pour [latex]x[/latex]=6, mais pour tout [latex]x[/latex]
CQFD

J'ai bien essayé de répondre en LaTex, mais pas évident évident...

De ttes façons, ton devoir doit être corrigé smile
TiLapiot

 #12 - 23-09-2010 20:31:56

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Pourquoi 6,5 x 6,5 &tg; 6 x 7

Depuis le 4 avril, oui, il doit l'être smile


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #13 - 23-09-2010 21:14:54

falcon
Professionnel de Prise2Tete
Enigmes résolues : 26
Messages : 106

Pouurquoi 6,5 x 6,5 > 6 x 7

[TeX]6,5 \times 6,5 = 42,25
6 \times 7 = 42[/TeX]
Que dire de plus ?
42 ?


Il vaut mieux pomper meme s'il ne se passe rien que risquer qu'il se passe quelque chose de pire en ne pompant pas

 #14 - 24-09-2010 06:58:46

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

Pourquuoi 6,5 x 6,5 > 6 x 7

plus un rectangle d'aire n sera carré, plus son périmètre diminuera!donc si on garde un meme périmètre, le plus grand sera forcément le plus carré!
1*5 de périmètre aura une aire de 5
3*3 de périmetre aura une aire de 9


Un promath- actif dans un forum actif
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 30 moutons, ils meurent tous sauf 15, combien en reste-t-il ?

Sujets similaires

Mots clés des moteurs de recherche

Mot clé (occurences)
Solution x construction (26) — X construction soluce (9) — X construction solution (5) — Soluce x construction (4) — Solutions x construction (3) — Moyenne arithmetique superieure a moyenne geometrique (2) — Moyenne geometrique inferieure a la moyenne arithmetique (2) — X construction solution 7 (2) — Enigme pourquoi (2) — Solution x construction niveau 7 (2) — Moyenne arithmetique superieure a la moyenne geometrique (2) — Solution x construct niveau 7 (2) — Solution du jeux x construction niv 6 (2) — Solution du jeux x construction (2) — Solution pour x construction level 6 (2) — X construction niveau 6 (2) — Astuce x construction niveau 6 (1) — 06x - 01 x = 72 (1) — X construction niveau 6 videou soluce (1) — Moyenne arithmetique geometrique quadratique (1) — -5x+5x (1) — Enigme 5 x 5 (1) — Niveau 7 de x construction (1) — F(x)=5x (1) — Solution x construction niveau 6 (1) — Moyennes quadratiques (1) — X construction niveau 7 solution (1) — X = 6 x/7 + 6/7 (1) — Construction de 36 (1) — Moyenne arithmetique superieure moyenne geometrique (1) — Forme geometrique solide x construct (1) — Xconstruction level 5 solution (1) — Pourquoi 6 (1) — Pourquoi moyenne geometrique (1) — Couper le moins de carres possibles dans un rectangle de 6x7 (1) — X construct solution (1) — Compas (1) — Xconstruct solution (1) — Moyenne arithmetique toujours superieure a la moyenne geometrique (1) — Solution x construction 7 (1) — X construction niveau 6 le jeu (1) — Soluce x construc niveau 6 (1) — Xconstruction soluiton (1) — Dessin t e pas dans les clous (1) — Soluces x construct (1) — 5x messages (1) — Moyenne geometrique videos (1) — Soluce xconstruction (1) — X construction reponse (1) — Enigme jaloux (1) — 5x. 6x (1) — Reponse x construction (1) — 65 x 65 (1) — Pourquoi moyenne arithmetique toujours superieur a la moyenne geometrique (1) — X construction soluces (1) — Enigmes moyennes (1) — Solution x construction level 6 (1) — La moyenne arithmetico-geometriqueharmonique et quadratique (1) — Comment couper en 4 une enigme geometrique (1) — Pourquoi x mathematique (1) — F(x)=(6-t)e(^05x)-6 (1) — -ln(x) montrer que la moyenne arithmetique est toujours superieure ou egale a la moyenne geometrique (1) — Moyenne arithmetique superieur a moyenne geometrique (1) — Solution x constrution (1) — Inegalite (1) — X construct 7 solution (1) — Montrer la moyenne arithmetique superieure moyenne geometrique (1) — La moyenne arithmetique de 6 nombres positifs egale a 5. (1) — Soluce de x construction (1) — La moyenne arithmetique de 6 nombres positifs est 5 (1) — Demontrer que la moyenne quadratique est superieur a la moyenne geometrique (1) — Content (1) — Astuce sur x construct au nivo 6 sur le telephone (1) — X construct solution 7 (1) — Leen prodoction (1) — 6/5x...=-6 (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete