Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #51 - 29-11-2012 15:51:38

Clydevil
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 901
Lieu: Seahaven island

Mais où est l''égout ?

http://www.prise2tete.fr/upload/Clydevil-FindCanal4.PNG

Bon ba en jouant pour la première fois (très mal donc) avec Geogebra (excellent programme) et en tatouillant j'ai convergé vers une autre forme générique qui a le mérite d’être bien plus facile a construire et a compter, cf ci dessus.
Bilan: environ 2.6389
Voir sur Wolfram alpha l'expression de la valeur exacte

#0 Pub

 #52 - 29-11-2012 15:59:00

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1746

aMis où est l'égout ?

Excellent Clydevil !

 #53 - 29-11-2012 17:37:37

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,233E+3

Mais où est l'égotu ?

Un petit essai avant la fin .

http://img41.imageshack.us/img41/314/carrgout.jpg

C'est trop simple pour être un minimum smile

Vasimolo

PS : j'aurais dû trouver , le point avec les angles de 120° est le point de Fermat qui minimise la somme des distances aux sommets d'un triangle smile

 #54 - 29-11-2012 18:45:03

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1746

Mais où est l''égout ?

Bravo à tous ceux qui ont trouvé une solution, quelle qu'elle soit.

Je vous laisse regarder la solution proposée juste au-dessus par Clydevil, qui permet de creuser au pire 264 m environ pour trouver la canalisation.

 #55 - 30-11-2012 17:07:01

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1106
Lieu: Jacou

Masi où est l'égout ?

Puisque c'est un problème mathématique smile, je me demande, si on creuse en tous les points dont les 2 coordonnées sont rationnelles, quelles est la longueur ? Je dirais 0 et est-on sûr de trouver la canalisation? Il me semble que oui.

C'est juste pour lancer un débat smile

 #56 - 30-11-2012 22:35:44

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,233E+3

Mais où est l'égoout ?

D'un autre côté il te faudra un temps infini pour creuser tous les trous et le temps c'est de l'argent lol

Vasimolo

 #57 - 02-12-2012 12:00:26

Tofic
Passionné de Prise2Tete
Enigmes résolues : 29
Messages : 72

maos où est l'égout ?

ouaa, classe la solution, je dormirais moins con cette nuit.

 #58 - 02-12-2012 12:09:46

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3797

Mais o ùest l'égout ?

rivas a écrit:

Puisque c'est un problème mathématique smile, je me demande, si on creuse en tous les points dont les 2 coordonnées sont rationnelles, quelles est la longueur ? Je dirais 0 et est-on sûr de trouver la canalisation? Il me semble que oui.

C'est juste pour lancer un débat smile

Non, car sans les irrationnels, tu ne peux pas faire de continuité. Imagine que l'égout passe justement sur la diagonale, quel couple de rationnel te permettra de l'intercepter ?

 #59 - 02-12-2012 12:37:36

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,233E+3

Mais où est l'égou ?

Il me semble que (1;1) intercepte la bête smile

Ca me rappelle un ou deux problèmes avec les coordonnées rationnelles ou non des points d'une droite .

Vasimolo

 #60 - 02-12-2012 12:50:51

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3797

Mais où est l'égut ?

Ah oui, en plus c'est idiot, je faisais la droite y=x.
Mais si je traverse selon la droite d'équation y=rac2(x+1/100) ?

 #61 - 03-12-2012 10:02:53

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1106
Lieu: Jacou

Mias où est l'égout ?

Bien vu, il semble difficile que les points de cette droite aient leurs 2 coordonnées rationnelles simultanément.
[latex]\mathbb{Q}^2[/latex] est bien dense dans [latex]\mathbb{R}^2[/latex] mais une droite peut arriver à passer "entre" tous les points de [latex]\mathbb{Q}^2[/latex]. Ca chiffonne un peu mon intuition mais bon, comme je l'ai souvent dit, il ne faut pas trop se fier à l'intuition surtout sur l'infini...

 #62 - 03-12-2012 22:23:06

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1746

mais où esy l'égout ?

@rivas : Le problème a une résolution mathématique mais son sens reste concret. En revanche, creuser les points de coordonnées rationnelles...

Un prolongement qui me semble intéressant :

Le schéma de tranchée donné par Clydevil est celui qui minimise la longueur de la tranchée, c'est-à-dire le temps (maximal) au bout duquel on est certain de trouver la conduite d'égout.

Une autre question que l'on peut se poser est : "Quel est le schéma de creusage qui minimise le temps moyen au bout duquel on va trouver l'égout ?"

Si l'on en reste au schéma de Clydevil : Vaut-il mieux creuser la demie-diagonale d'abord ? Plus précisément, par où commencer ?

Mais d'ailleurs, ce schéma de tranchée reste-t-il le meilleur en ce qui concerne le temps moyen ? Les deux diagonales pourraient peut-être assurer un meilleur temps moyen ?

Évidemment, il y a d'abord besoin de trouver une modélisation acceptable. Je lance un peu tout ça en vrac sans trop avoir réfléchi...

 #63 - 03-12-2012 23:05:57

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1106
Lieu: Jacou

Mias où est l'égout ?

Les rationnels, c'était une blague. bien sûr...

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 40 moutons, ils meurent tous sauf 18, combien en reste-t-il ?

Sujets similaires

Sujet Date Forum
11-04-2011 Enigmes Mathématiques
P2T
02-06-2013 Enigmes Mathématiques
P2T
La mouche par Nicouj
22-06-2009 Enigmes Mathématiques
P2T
Inégalité cubes par Bogriga
18-01-2017 Enigmes Mathématiques
P2T
Jeux à deux 1 par Vasimolo
12-03-2011 Enigmes Mathématiques
P2T
28-03-2020 Enigmes Mathématiques
P2T
Pi pi ! par gasole
25-01-2011 Enigmes Mathématiques
P2T
J'ai pas le temps... par SaintPierre
05-05-2011 Enigmes Mathématiques
06-09-2013 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete