Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #101 - 10-06-2013 11:56:41

godisdead
Expert de Prise2Tete
Enigmes résolues : 22
Messages : 747

combien de labcers de dé avant de... ?

Post 37 :Quelle est ton espérance de gain ?

post 89) tu ne réponds pas à la question.
Si je reprends ton tableau pile ou face :
On voit qu'après 2 jets.
Les deux joueurs ont autant de chance de gagner !
Après 3 jets. Tu as 8 sequences favorables au 65, pour seulement 6 au 66.

Donc en moyenne, le 65 gagnera plus souvent que le 66 !

#0 Pub

 #102 - 10-06-2013 12:22:56

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

Coombien de lancers de dé avant de... ?

post 89
Mais non

sur les 16 cas 8 sont morts.

il en reste 8 et c'est 2 à 2

Le premier qui y arrive a gagné la partie.

post 37 je pense 10/9

 #103 - 10-06-2013 15:16:06

godisdead
Expert de Prise2Tete
Enigmes résolues : 22
Messages : 747

combizn de lancers de dé avant de... ?

Je te reponds ce soir (faut un peu bosser de temps en temps smile )

 #104 - 10-06-2013 18:35:54

godisdead
Expert de Prise2Tete
Enigmes résolues : 22
Messages : 747

Combien de lancers de dé avaant de... ?

Reprenons l'exercice. Deux joueurs lancent 3 fois la pièce.
Si le premier joueur fait PP en premier, il gagne.
Si le deuxième joueur fait PF en premier, il gagne. Sinon, match nul.
Cela ne répond pas à 100% à la problématique, mais je pense que c'est largement suffisant pour démontrer la faille dans la logique de princeleroi.
Nous avons donc 64 parties différentes possibles !

Joueur 1            Joueur 2               Gagnant
P    P    P    |    P    P    P    |    J1
P    P    F    |    P    P    P    |    J1
P    F    P    |    P    P    P    |    N
P    F    F    |    P    P    P    |    N
F    P    P    |    P    P    P    |    J1
F    P    F    |    P    P    P    |    N
F    F    P    |    P    P    P    |    N
F    F    F    |    P    P    P    |    N
P    P    P    |    P    P    F    |    J1
P    P    F    |    P    P    F    |    J1
P    F    P    |    P    P    F    |    J2
P    F    F    |    P    P    F    |    J2
F    P    P    |    P    P    F    |    N
F    P    F    |    P    P    F    |    J2
F    F    P    |    P    P    F    |    J2
F    F    F    |    P    P    F    |    J2
P    P    P    |    P    F    P    |    N
P    P    F    |    P    F    P    |    N
P    F    P    |    P    F    P    |    J2
P    F    F    |    P    F    P    |    J2
F    P    P    |    P    F    P    |    J2
F    P    F    |    P    F    P    |    J2
F    F    P    |    P    F    P    |    J2
F    F    F    |    P    F    P    |    J2
P    P    P    |    P    F    F    |    N
P    P    F    |    P    F    F    |    N
P    F    P    |    P    F    F    |    J2
P    F    F    |    P    F    F    |    J2
F    P    P    |    P    F    F    |    J2
F    P    F    |    P    F    F    |    J2
F    F    P    |    P    F    F    |    J2
F    F    F    |    P    F    F    |    J2
P    P    P    |    F    P    P    |    J1
P    P    F    |    F    P    P    |    J1
P    F    P    |    F    P    P    |    N
P    F    F    |    F    P    P    |    N
F    P    P    |    F    P    P    |    J1
F    P    F    |    F    P    P    |    N
F    F    P    |    F    P    P    |    N
F    F    F    |    F    P    P    |    N
P    P    P    |    F    P    F    |    J1
P    P    F    |    F    P    F    |    J1
P    F    P    |    F    P    F    |    J2
P    F    F    |    F    P    F    |    J2
F    P    P    |    F    P    F    |    N
F    P    F    |    F    P    F    |    J2
F    F    P    |    F    P    F    |    J2
F    F    F    |    F    P    F    |    J2
P    P    P    |    F    F    P    |    J1
P    P    F    |    F    F    P    |    J1
P    F    P    |    F    F    P    |    N
P    F    F    |    F    F    P    |    N
F    P    P    |    F    F    P    |    J1
F    P    F    |    F    F    P    |    N
F    F    P    |    F    F    P    |    N
F    F    F    |    F    F    P    |    N
P    P    P    |    F    F    F    |    J1
P    P    F    |    F    F    F    |    J1
P    F    P    |    F    F    F    |    N
P    F    F    |    F    F    F    |    N
F    P    P    |    F    F    F    |    J1
F    P    F    |    F    F    F    |    N
F    F    P    |    F    F    F    |    N
F    F    F    |    F    F    F    |    N

Le joueur 1 (PP ou 66) gagne 16 fois
Match nul 26 fois
Le joueur 2 (PF ou 65) gagne 22 fois

 #105 - 10-06-2013 18:43:58

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

Combien de lancers de dé avan tde... ?

Je ne comprend pas ton tableau.
Mais si tu veux un paradoxe: sur deux lancers je choisis PP si tu prends FP tu gagnes dans 75% des cas,pourtant, il sont équiprobables.

 #106 - 10-06-2013 18:50:10

godisdead
Expert de Prise2Tete
Enigmes résolues : 22
Messages : 747

Combien de lanncers de dé avant de... ?

Mais si tu veux un paradoxe: sur deux lancers je choisis PP si tu prends FP tu gagnes dans 75% des cas,pourtant, il sont équiprobables. ?

Tu peux me le démontrer ?

Mon tableau est simple, sur 3 lancers, il donne toutes les parties différentes possibles et la dernière colonne détermine le vainqueur !

 #107 - 10-06-2013 18:57:05

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

comboen de lancers de dé avant de... ?

Pour le paradoxe:si pile sort il te faut un deuxième pile pour gagner,si un face sort au premier jet ou au deuxième je gagne dans tous les cas.
Pour ton tableau désolé mais je ne le comprend pas.

 #108 - 10-06-2013 19:36:44

godisdead
Expert de Prise2Tete
Enigmes résolues : 22
Messages : 747

Combien de lancers de dé avant e... ?

Encore une fois, tu ne comprends pas l'énoncé !
Il n'y a un dé/pièce pour les deux joueurs, mais un chacun !

Donc si le premier joueur joueur sort FFFPP
Et le deuxième sort PFFFF
Le premier joueur gagne (à ton jeu bien entendu)

Le FP sorti par le premier joueur ne fait pas gagner le deuxième !

Et encore une fois, sur une succession de jet (et non, le jet simultané de 2 dés/pièces), FP arrivera avant PP !

Pour en revenir à mon tableau, pour 3 lancers de pièces, chaque joueur à 8 enchaînements possibles !
Jusque là, es-tu d'accord ?
Donc, il existe 8*8, 64 jeux différents possibles, d'accord ?
Sur ces 64 jeux, le J2 gagne plus souvent que le joueur 1, d'accord ?

 #109 - 10-06-2013 19:41:08

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

combien de lancers dr dé avant de... ?

oups 

Il n'y a pas un dé/pièce pour les deux joueurs, mais un chacun !


tu as raison désolé.

madrollsad

 #110 - 13-06-2013 00:14:44

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combien de lancers dde dé avant de... ?

Personne n'a encore répondu aux questions complémentaires sur le cas général.

Par exemple, parmi les 5 combinaisons "654", "665", "566", "656" et "666", lesquelles nécessitent plus de lancers que les autres en moyenne pour apparaître ?

Combien de lancers faut-il en moyenne pour voir apparaître chacune de ces 5 combinaisons ?

Il y a plein d'indices tout au long du sujet...

 #111 - 18-11-2013 16:21:34

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combien de alncers de dé avant de... ?

Tiens, la théorie oscillatoire de kossi_tg/Mathias pour l'énigme "Promenons nous dans le train" peut s'adapter pour répondre facilement aux questions posées dans ce sujet. Qui est-ce qui voit comment ?

 #112 - 18-11-2013 20:03:19

kossi_tg
Professionnel de Prise2Tete
Enigmes résolues : 18
Messages : 307
Lieu: Montargis

Combie nde lancers de dé avant de... ?

Je vois que ma théorie peut avoir de l'avenir lool:

D'après l'explication émise par Mathias: si 1 chance sur k de réaliser une chose, je la réaliserai en moyenne toutes les n fois.

Revenons à ma suite [latex](U_n)[/latex]:
- avoir un 6: 1 chance sur 6: [latex]U_1=6[/latex],
- avoir 2 six de suite: 1 chance sur 36: [latex]U_2=36[/latex],
....
- avoir n six de suite: 1 chance sur [latex]6^n[/latex]: [latex]U_n=6^n[/latex].

On remarque que [latex](U_n)[/latex] est une suite géométrique de raison 6 et de premier terme [latex]U_1=6[/latex].

Le nombre moyen de lancers pour obtenir n six de suite est la somme des n premiers éléments de [latex](U_n)[/latex]
[TeX]LancersMoyens(n)=\sum_{i=1}^{n}U_i=U_1*\frac{6^n-1}{6-1}=\frac{6}{5}*(6^n-1)[/TeX]
CQFD smile

 #113 - 20-11-2013 01:42:10

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combienn de lancers de dé avant de... ?

Je ne comprends pas très bien à quoi correspondent les [latex]U_i[/latex] dans ton raisonnement et pourquoi tu en fais la somme.

 #114 - 20-11-2013 22:08:31

kossi_tg
Professionnel de Prise2Tete
Enigmes résolues : 18
Messages : 307
Lieu: Montargis

Combien de lancers de dé avant ed... ?

[latex]U_i[/latex] est l'inverse de la probabilité d'avoir [latex]i[/latex] six de suite en lançant [latex]i[/latex] fois le dé c'est-à-dire qu'en lançant [latex]i[/latex] fois le dé à chaque fois, [latex]U_i[/latex] est le nombre de fois qu'il faut le faire pour obtenir [latex]i[/latex] six.

La somme vient du fait que pour obtenir n six de suite, il faut préalablement obtenir 1, 2, ..., n-1 six de suite. Il faut donc comptabiliser toutes les fois qu'il faudra pour obtenir des séries intermédiaires de 1 à n.

 #115 - 20-11-2013 23:09:28

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

combirn de lancers de dé avant de... ?

Je ne comprends toujours pas ton raisonnement. Restons-en à [latex]n=2[/latex] pour l'instant. Pourquoi faut-il ajouter 6 et 36 ?

 #116 - 20-11-2013 23:45:39

kossi_tg
Professionnel de Prise2Tete
Enigmes résolues : 18
Messages : 307
Lieu: Montargis

combien de lancers de dé acant de... ?

Pour faire un 6-6, il faut procéder en 2 temps:
*** Arriver à avoir un 1er six: 6 lancers,
*** A chacun de ces 6 lancers, il y a 6 autres lancers associés: 36 lancers à la recherche du 2ième six.

Le tableau ci-après décrit la situation. Le double 6 cherché est marqué en gras. Le nombre de lancers est la taille du tableau : 6+36.

http://www.prise2tete.fr/upload/kossi_tg-Six2Suite.png

Spoiler : [Afficher le message] S'il fallait aller à n=3, il faudrait ajouter 36*6, n=4 ajouter 36*6*6, ...

 #117 - 21-11-2013 01:09:14

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combien de lancer de dé avant de... ?

Je ne te suis pas mais peu importe.

Voici mon point de vue :

J'aurais plutôt mis les cases rouges à gauche pour représenter le 1er six, et les cases bleues à droite pour représenter le 2ème six.

Pour réussir le 1er six, on va faire en moyenne 6 lancers. Une fois le premier six réussi, on va tenter une première fois le 2ème six, que l'on va rater. Et l'on recommence alors à tenter le 1er six, etc... Ce n'est qu'à la sixième tentative du 2ème six qu'on va le réussir.

Ce qui donne donc la série de longueur moyenne suivante pour obtenir 66 :

123456-1-123456-2-123456-3-123456-4-123456-5-123456-6

De manière générale, si l'on note [latex]E_n[/latex] le nombre de lancers moyens pour obtenir [latex]n[/latex] six, en raisonnant de la même manière on voit que [latex]E_{n+1}=6E_n + 6[/latex]. Ce qui permet de conclure facilement que [latex]E_n = 6^n + ... + 6[/latex].

 #118 - 21-11-2013 07:54:24

kossi_tg
Professionnel de Prise2Tete
Enigmes résolues : 18
Messages : 307
Lieu: Montargis

combien de lancers de dé avznt de... ?

On interprète les mêmes faits exactement de la même manière; la seule différence est que tu mets B+A alors que je mets A+B. Tout dépend de la formulation intuitive des faits. Je ne vois pas pourquoi tu n'arrive pas à suivre  hmm

 #119 - 21-11-2013 14:38:55

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combien de lancers de dé vant de... ?

kossi, saurais-tu répondre aux questions restées sans réponses tout au long de ce fil ?

Par exemple, quel est le nombre moyen de lancers pour obtenir "665" ? Et pour  "656" ? Et "566" ?

 #120 - 21-11-2013 20:25:39

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

Combien de lancers de dé avant de.. ?

titou:peux-tu me dire quelle est la probabilité que chaque face d'un dé à six faces sorte une fois en six lancers?
Ca m'intéresse!

 #121 - 21-11-2013 20:57:44

SabanSuresh
Elite de Prise2Tete
Enigmes résolues : 45
Messages : 1951
Lieu: Paris

Combien dee lancers de dé avant de... ?

La probabilité que chaque face d'un dé à six faces sorte une fois en six lancers est de 1 : 1/6*6 (chaque face à 1 chance sur 6 de tomber à chaque lancers).

 #122 - 21-11-2013 21:05:30

PRINCELEROI
Elite de Prise2Tete
Enigmes résolues : 33
Messages : 1274

Combien dee lancers de dé avant de... ?

Saban:j'ai 6/6 chance d'avoir une face quelconque au premier lancer puis 5 sur 6 d'en avoir une autre au deuxième puis 4 sur 6 d'en avoir une autre au troisième etc...
Soit 5!/6^5= 120/7776.Même pas 2%!
Enfin je pense mais titou va nous dire!  big_smile

 #123 - 21-11-2013 23:04:22

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 568

combien de lanczrs de dé avant de... ?

Pas besoin de Titou, c'est évident que c'est bon ^^.

 #124 - 07-03-2015 11:11:32

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Combien de lancers de dé avant de.. ?

Plus d'un an après, ces questions résistent :

1) Combien de lancers faut-il en moyenne pour voir apparaître "665" ?

2) Combien de lancers faut-il en moyenne pour voir apparaître "566" ?

3) Combien de lancers faut-il en moyenne pour voir apparaître "656" ?

4) Combien de lancers faut-il en moyenne pour voir apparaître une séquence quelconque dans le cas général ?

Bon week-end !

 #125 - 07-03-2015 11:17:01

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3802

Combien de lancers de dé aant de... ?

Salut Titoufred,
N'ayant pas suivi cette discussion au départ, 665 désigne t'il 6 puis 6 puis 5 consécutifs ?
Merci pour cette précision.

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Pif, Paf et ?

Mots clés des moteurs de recherche

Mot clé (occurences)
Combien de lanc? (2) — X est le nombre de lancers necessaires (1) — Comment faire que 6 au lance de de (1) — Xx6xx66 (1) — D? (1) — Quelle sont le nombre de lancers? (1) — Comment faire 6 avec un des (1) — Comment faire un six au de (1) — Comment faire que des 6 en lancant un de (1) — Quel est la meilleur facon de lancer un de pour faire 6? (1) — Quel nombre de chance peut obtenir avec deux des (1) — Nombre de coups necessaires pour avoir un 6 (1) — Maniere de lancer un d? pour avoir 6 (1) — D? six faces (1) — Quel est le nombre de coup necessaire pour obtenir 6 en lancant le de (1) — Combien de des 6 faut il lancer pour avoir un 6 ? (1) — Faire que des 6 au de (1) — Combien faut il de lancer pour avoir un pile (1) — Esperance nombre lancers pour obtenir un six (1) — Comment lance 6 en un coup sur les des (1) — Combien de fois faut il lancer un de pour obtenir un 6 ou un 4 (1) — Avoir un 6 avec 2 lance (1) — On lance un de infiniment ; on note x le nombre de lancers necessaires pour obtenir le premier 6 et y le nombre de lancers necessaires apres l obtention du premier 6 pour obtenir le deuxieme 6 (1) — Combien de lancers avant d obtenir un 6 (1) — Combien de chance de faire un six sur deux des (1) — Nombre moyen de lancers pour obtenir un 6 (1) — En moyenne combien de lancer pour obtenir un 6 (1) — Combien de facon de lancer (1) — Esperance du nombre de coups (1) — Comment tout le temps faire un 6 avec un de (1) — Comment bien lancer un de et tomber sur le 6 (1) — Probabilites de faire 6 en lancant 6 des (1) — Comment faire des 6 avec des des (1) — 11 chance sur 36 de faire un 6 (1) — Combien de lancer de de faut il pour obtenir les 6 faces? (1) — Probabilite de faire 3 critique d affilee sur de 20 (1) — Comment faire des 6 avec un de (1) — Lancer un decombien de fois pour avoir une fois 6 (1) — Quel est le nombre moyen de lancers pour une partie (1) — Quel est lenombre de coups necessairepour obtenir 6 en lancant un de (1) — En lancant un de a 6 faces on obtient 2 est il vrai de dire qu on a moins de chanse d obtenir 2 qu un autre nombre au lancer suivant (1) — Probabilite lancers necessaire avant l apparition du 6 (1) — Au bout de combien de lancers le chiffre 5 apparait (1) — Nombre moyen de lancer pour obtenir 6 aux des (1) — Nombre de lancers necessaires pour obtenir tous les numeros d un de (1) — Que signifie l esperance dans 3 lancers de de pour obtenir 6 (1) — Nombre moyen de lancers pour obtenir 5 faces d affilee (1) — Probabilit?? d avoir 3 six d affil??e (1) — Nombre de lancers necessaire pour obtenir (1) — Enigme des lancers (1) — Comment faire 6 avec un de (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete