Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 09-09-2013 19:29:45

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathématiques pour les nuls 16 (Produit et raicnes de l'unité)

Allez, pour achever mes révisions sur les complexes je vous propose ceci, à mon goût le problème est simple, mais allez savoir... smile

Soit n impair [latex]\{u_1,\text{..., }u_{n-1}\}[/latex] les racines n-ièmes de l'unité autre que 1, calculer [latex]\prod_{k=1}^{n-1} \frac{1-u_k}{1+u_k}[/latex]


La case réponse valide la réponse, en LaTeX


Shadock smile

EDIT : Merci Titou, d'avoir fait remarqué que n est impair !


 
Réponse :

"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
  • |
  • Répondre

#0 Pub

 #2 - 09-09-2013 22:48:44

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

Mathématiques pour les unls 16 (Produit et racines de l'unité)

Il va falloir enlever -1 également lorsque n est pair non ? Et précise que ce sont des racines nèmes.

 #3 - 09-09-2013 23:25:38

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathématiques pour les nul 16 (Produit et racines de l'unité)

Merci pour m'avoir fait préciser que ce sont des racines n-ièmes smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #4 - 09-09-2013 23:35:17

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

mathématiques poyr les nuls 16 (produit et racines de l'unité)

Si n est pair alors une des racines est -1 donc l'expression n'a pas de sens (le dénominateur s'annule).

 #5 - 09-09-2013 23:40:53

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

mathématiques pour leq nuls 16 (produit et racines de l'unité)

Oups oui j'ai oublié de préciser n est impair hmm


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #6 - 10-09-2013 02:36:18

kossi_tg
Professionnel de Prise2Tete
Enigmes résolues : 18
Messages : 307
Lieu: Montargis

Mathématiquess pour les nuls 16 (Produit et racines de l'unité)

[TeX]U_k=e^{2ik\pi/n}[/TeX][TeX]P_k=\frac{1-U_k}{1+U_k}=\frac{e^{-ik\pi/n}}{e^{-ik\pi/n}}*\frac{1-e^{2ik\pi/n}}{1+e^{2ik\pi/n}}=\frac{e^{-ik\pi/n}-e^{ik\pi/n}}{e^{-ik\pi/n}+e^{ik\pi/n}}[/TeX][TeX]P_k=\frac{C-iS-C-iS}{C-iS+C+iS}=\frac{-iS}{C}[/latex]  avec  [latex]C=cos(k\pi/n)[/latex] et [latex]S=sin(k\pi/n)[/TeX]
Soit
[TeX]P=\prod_{k=1}^{n-1}{P_k}=\prod_{k=1}^{n-1}{\frac{-iS}{C}}=(-i)^{n-1}*\frac{\prod_{k=1}^{n-1}{S}}{\prod_{k=1}^{n-1}{C}}[/TeX][TeX]P=(-i)^{n-1}*\frac{\frac{n}{2^{n-1}}}{\frac{cos(n\pi/2-\pi/2)}{2^{n-1}}}=(-i)^{n-1}*\frac{n}{cos(n\pi/2-\pi/2)}[/TeX]
On va distinguer 2 cas de n, n étant impair:

- 1er cas: [latex]n=4*p+3[/latex] où p est un entier naturel
[TeX](-i)^{n-1}=(-i)^{4*p+2}=-1[/latex]  et [latex] cos(n\pi/2-\pi/2)=cos(p*2\pi+\pi)=-1[/TeX]
donc [latex]P=n[/latex],

-2ième cas: [latex]n=4*p+1[/latex] où p est un entier naturel
[TeX](-i)^{n-1}=(-i)^{4*p}=1[/latex]  et  [latex]cos(n\pi/2-\pi/2)=cos(p*2\pi)=1[/TeX]
donc [latex]P=n[/latex].

En définitif  [latex]\prod_{k=1}^{n-1}{\frac{1-U_k}{1+U_k}}=n[/latex]

 #7 - 10-09-2013 07:30:55

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathématiques pour les nuls 16 (roduit et racines de l'unité)

Bravo kossi_tg smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #8 - 10-09-2013 12:21:50

masab
Expert de Prise2Tete
Enigmes résolues : 44
Messages : 971

Mathématiques pour les nuls 16 (Produit et racines d l'unité)

Le produit demandé est égal à [latex]n[/latex]
En effet on a  [latex]x^n-1=(x-1)\,(x^{n-1}+x^{n-2}+\cdots+x+1)[/latex]
Posons [latex]P(x)=x^{n-1}+x^{n-2}+\cdots+x+1[/latex]
Alors on a  [latex]\prod_{k=1}^{n-1} (x-u_k) = P(x)[/latex]
Par suite  [latex]\prod_{k=1}^{n-1} \frac{1-u_k}{1+u_k} = \frac{P(1)}{(-1)^{n-1}P(-1)} = \frac{n}{1\times 1} = n\quad\quad[/latex]  ([latex]n[/latex] est impair)
Voilà !

 #9 - 10-09-2013 18:13:08

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathéamtiques pour les nuls 16 (Produit et racines de l'unité)

Bonne réponse et de deux !!

En revanche ton raisonnement me laisse perplexe par ça rapidité hmm


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #10 - 12-09-2013 23:22:36

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathématiques por les nuls 16 (Produit et racines de l'unité)

Voici ma solution, il doit y en avoir d'avoir quoiqu'elles se ressemblent certainement.

Si [latex]n=1[/latex] le produit est 1.
Si [latex]n=3[/latex] le produit est [latex]\frac{1-j}{1+j}*\frac{1-j^2}{1+j^2}=\frac{1-j-j^2+j^3}{1+j+j^2+j^3}=\frac{3}{1}=3[/latex]

Montrons alors que [latex]\prod_{k=1}^{n-1} \frac{1-u_k}{1+u_k}=n[/latex]

D'abord, [latex]z^n-1=\prod_{k=0}^{n-1} (z-u_k)=(z-1)\prod_{k=1}^{n-1}(z-u_k)=(z-1)P(z)[/latex]

Que l'on dérive et on trouve [latex]nz^{n-1}=P(z)+(z-1)P'(z)[/latex] ainsi pour [latex]z=1[/latex] on a [latex]P(1)=\prod_{k=1}^{n-1} (1-u_k)=n[/latex]

De plus comme [latex]n[/latex] est impair,
[TeX]z^n+1=\prod_{k=0}^{n-1} (z+u_k)=(z+1)\prod_{k=1}^{n-1}(z+u_k)=(z+1)Q(z)[/TeX]
Pour [latex]z=1[/latex] on a donc [latex]Q(1)=\prod_{k=1}^{n-1}(1+u_k)=1[/latex].


On a donc [latex]\prod_{k=1}^{n-1}(1+u_k)=\prod_{k=1}^{n-1}(-1-u_k)=P(-1)[/latex]

or [latex]z^n-1=(z-1)P(z)[/latex] qui donne pour [latex]z=1[/latex], [latex]-2=-2P(-1)[/latex] soit[latex]P(-1)=1[/latex]

D'où le résultat :
[TeX]\prod_{k=1}^{n-1} \frac{1-u_k}{1+u_k}=n[/TeX]
Shadock cool


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #11 - 13-09-2013 09:34:42

masab
Expert de Prise2Tete
Enigmes résolues : 44
Messages : 971

Mathématiques poour les nuls 16 (Produit et racines de l'unité)

Il y a plus simple comme je l'ai indiqué
[TeX]P(x)=x^{n-1}+x^{n-2}+\cdots+x+1[/latex] donc [latex]P(1)=n[/latex] et [latex]P(-1)=1[/latex].
D'où
[latex]\prod_{k=1}^{n-1}(1-u_k)=P(1)=n[/TeX]
et
[TeX]\prod_{k=1}^{n-1}(1+u_k)=(-1)^{n-1}\prod_{k=1}^{n-1}(-1-u_k)=(-1)^{n-1}P(-1)=1[/TeX]
Voilà !

 #12 - 13-09-2013 15:23:55

titoufred
Elite de Prise2Tete
Enigmes résolues : 20
Messages : 1749

mathématiques pour les nuls 16 (produit et racones de l'unité)

Bravo masab !

 #13 - 13-09-2013 20:41:43

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Mathématiques pour les nuls 16 (Produit et racines dee l'unité)

Oui je sais, mais pour éviter les remarques de certains je préfère mettre ce que j'ai fais.

Shadock smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 31ème, en quelle position êtes-vous ?

Mots clés des moteurs de recherche

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete