 |
#1 - 10-12-2014 18:36:52
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
Pythagore dans le monde éel
Bonsoir à tous 
Tout le monde connaît le triangle pythagoricien ( 3 ; 4 ; 5 ) qui vérifie la fameuse relation : [latex]3^2+4^2=5^2[/latex] .
Pour changer un peu , j'aimerais bien trouver un réel [latex]x[/latex] différent de 2 pour lequel [mode Latex défaillant]3^x+4^x=5^x[/mode Latex défaillant] .
Mais je n'y arrive pas 
Vasimolo
#2 - 10-12-2014 18:45:18
- SabanSuresh
- Elite de Prise2Tete
- Enigmes résolues : 45
- Messages : 1951
- Lieu: Paris
pythzgore dans le monde réel
Je pense que que la seule solution est 2. Si on dessine les courbes de 3^x+4^x et celle de 5^x, les courbes n'ont qu'un seul point d'intersection. Au dessus de 2, 5^x>3^x+4^x. La démarche n'est pas rigoureuse mais on moins, on sait qu'il n'y a pas d'autres solutions.
#3 - 10-12-2014 19:01:02
- gwen27
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 5,890E+3
pythagore dans le mondz réel
(3/5)^x tout comme (4/5)^x sont décroissantes sur R
Donc, pour que leur somme soit égale à 1 : une seule solution.
#4 - 10-12-2014 19:03:03
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
Pythagore dans l emonde réel
Oui c'est un premier pas Saban 
Bien vu Gwen !
Vasimolo
#5 - 10-12-2014 19:50:43
- nodgim
- Elite de Prise2Tete
- Enigmes résolues : 0
- Messages : 3801
pythagore dans le monde rérl
ça fait longtemps que je n'ai plus fait d'analyse... La fonction a^x pour a>1 est strictement croissante et monotone de -inf à + inf. Ajouter les fonctions 3^x et 4^x aussi. Je ne vois donc qu'un seul croisement possible avec 5^x, et puisqu'on sait que c'est en 2 que ça se produit, il n'y pas d'autre croisement possible.
#6 - 10-12-2014 20:25:44
- shadock
- Elite de Prise2Tete
- Enigmes résolues : 39
- Messages : 3333
Pythagore dans le monde réeel
Dans ce cas ne cherche pas plus tu ne trouves pas !
En effet la fonction qui a x associe a^x est strictement décroissante si 0<a<1 Donc il existe un unique x en l’occurrence 2 tel que :
(3/5)^x+(4/5)^x=1
Tout simplement. Shadock 
"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline
#7 - 11-12-2014 08:47:40
- Franky1103
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 3189
- Lieu: Luxembourg
Pythagore dan sle monde réel
3^x + 4^x = 5^x <=> f(x) = 0, avec f(x) = 0,6^x + 0,8^x - 1 f’(x) = ln(0,6).(0,6^x) + ln(0,8).(0,8^x) f' est négative donc f (qui est aussi continue) est décroissante donc, au mieux, f ne s’annulera qu’une fois (et on sait déjà où) x=2 est donc l'unique solution de: 3^x + 4^x = 5^x
#8 - 11-12-2014 13:59:51
- dahaouid
- Habitué de Prise2Tete
- Enigmes résolues : 49
- Messages : 34
pythahore dans le monde réel
#9 - 11-12-2014 15:38:45
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
pythagorz dans le monde réel
Vous avez tous bon 
Attention dahaouid : 1+1=2 
Vasimolo
#10 - 11-12-2014 16:17:11
- unecoudée
- Professionnel de Prise2Tete
- Enigmes résolues : 0
- Messages : 319
pythagore dans le mondz réel
salut.
soit la fonction f(x) = (3/5)^x + (4/5)^x - 1
elle est définie quelque soit x et continue et varie de +infini à -1 et est décroissante
elle s'annule bien évidemment pour x = 2 déjà
sa dérivée est la suivante: f'(x) = Ln(3/5). exp{x.Ln(3/5)} + Ln(4/5). exp{x.Ln(4/5)}
cette dérivée ne s'annule jamais et varie de - infini ---> 0-
on voit qu'elle est strictement décroissante et ne coupant qu'une fois l'axe des y elle ne s'annule donc qu'une fois en x=2 (théorème de Rolle) , je crois .
#11 - 11-12-2014 16:29:53
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
Pythaogre dans le monde réel
Oui unecoudée .
C'est plutôt le TVI ( théorème des valeurs intermédiaires ) .
Vasimolo
#12 - 11-12-2014 17:27:34
- unecoudée
- Professionnel de Prise2Tete
- Enigmes résolues : 0
- Messages : 319
pythagpre dans le monde réel
@vasimolo
oui . autant pour moi. il y a longtemps que l'école m'a quitté.
#13 - 11-12-2014 21:51:44
- Sydre
- Professionnel de Prise2Tete
- Enigmes résolues : 15
- Messages : 236
pythahore dans le monde réel
Quel optimiste ce Vasimolo 
3^x+4^x=5^x équivaut à (3/5)^x+(4/5)^x=1
La fonction f définie sur R par f(x)=(3/5)^x+(4/5)^x-1 est strictement décroissante.
D'autre part lorsque x tends vers - l'infini, f(x) tends vers + l'infini et lorsque x tends vers + l'infini, f(x) tends vers -1.
L'équation admet donc une solution unique d’après le TVI 
#14 - 12-12-2014 01:33:40
- fix33
- Elite de Prise2Tete
- Enigmes résolues : 48
- Messages : 1198
- Lieu: Devant un clavier depuis 1748
Pythagore ddans le monde réel
Je ne suis pas très bon à ce jeu-là, mais je me lance. 3^x < 4^x < 5^x sont positives, strictement croissantes. Leurs dérivées sont aussi strictement croissantes et : - pour x < 0, 3^x*log(3) > 4^x*log(4) > 5^x*log(5). - pour x > 0, 3^x*log(3) < 4^x*log(4) < 5^x*log(5). Si je ne dis pas de bêtise, cela ne laisse qu'1 et 1 seul point d'intersection entre les 2 courbes. Merci Wolfram pour la confirmation... 
Je ne vien sur se site que pour faire croir que je suis treise intélligens.
#15 - 12-12-2014 18:45:16
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
pythagoee dans le monde réel
@Sydre : oui . @Fix : c'est un peu tordu et je ne suis pas sûr que ça marche , il vaut mieux modifier légèrement l'équation pour la rendre plus facile à utiliser 
Vasimolo
#16 - 12-12-2014 19:42:56
- halloduda
- Professionnel de Prise2Tete
- Enigmes résolues : 24
- Messages : 495
- Lieu: Ardèche
Pythagore dans le monde rel
Il n'y a pas d'autre solution.
y=3^x+4^x-5^x dans WolframAlpha
#17 - 13-12-2014 10:08:44
- Nombrilist
- Expert de Prise2Tete
- Enigmes résolues : 10
- Messages : 568
pythagore dans le monfe réel
3^x + 4^x = 5^x
(3/5)^x + (4/5^x) = 1
On voit que pour x < ou égal à zéro, il n'y a pas de solution.
Soit f telle que f(x) = (3/5)^x + (4/5)^x
f(x) = exp[x.ln(3/5)] + exp[x.ln(4/5)]
f'(x) = ln(3/5).exp[x.ln(3/5)] + ln(4/5).exp[x.ln(4/5)]
Pour x>0, f' est strictement négative. f(0) = 2 et lim f en l'infini est 0. Donc, f réalise une bijection de R+* sur ]0;2[.
Donc, l'équation (3/5)^x + (4/5^x) = 1 n'a qu'une solution: x=2.
#18 - 13-12-2014 19:49:18
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
Pythagoe dans le monde réel
J'avoue que ce problème était un peu trop simple pour les P2Têtiens mais il fait équilibre avec les derniers gâteaux un peu trop lourds .
J'adore revisiter les classiques 
Merci aux participants .
Vasimolo
#19 - 13-12-2014 21:21:38
- Nombrilist
- Expert de Prise2Tete
- Enigmes résolues : 10
- Messages : 568
yPthagore dans le monde réel
Merci pour ce problème qui était tout à fait à mon niveau . ça me change des problèmes qui m'intéressent mais que je n'arrive pas à résoudre.
#20 - 14-01-2015 17:30:56
- JeremiePensif
- Amateur de Prise2Tete
- Enigmes résolues : 0
- Messages : 6
Ptyhagore dans le monde réel
Dernier théorème de Fermat : « Il n'existe pas de nombre entier strictement positif x, y, z vérifiant l'équation x^n + y^n = z^n lorsque n est un entier tel que n > 2 ».
#21 - 14-01-2015 17:57:37
- Franky1103
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 3189
- Lieu: Luxembourg
Pythagore dans le monde rel
Bienvenu parmi nous et merci pour l'info, toutefois hors sujet ici, et appelé maintenant théorème de Fermat-Wiles.
#22 - 14-01-2015 18:49:38
- JeremiePensif
- Amateur de Prise2Tete
- Enigmes résolues : 0
- Messages : 6
pythagore dans le monse réel
#23 - 14-01-2015 18:54:38
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
Pythgaore dans le monde réel
Tu as lu l'énigme ?
L'exposant n'est pas entier mais réel 
Vasimolo
#24 - 14-01-2015 19:00:48
- JeremiePensif
- Amateur de Prise2Tete
- Enigmes résolues : 0
- Messages : 6
Pythagore dans le moonde réel
D'accord, merci. Oui j'avais lu l'énigme. Mais je comprends beaucoup moins bien les mathématiques depuis qu'elles ne s'énoncent plus de manière littéraire comme au temps de Fermat : « Dans les entiers, aucun cube n'est la somme de deux cubes », etc. Allez dire de si belles et claires phrases avec des exposants non entiers !
#25 - 14-01-2015 19:04:10
- Vasimolo
- Le pâtissier
- Enigmes résolues : 49
- Messages : 5,348E+3
pythagorz dans le monde réel
Essaie de résoudre une équation de degré 4 avec des phrases et puis on en reparle 
Vasimolo
Mots clés des moteurs de recherche
|
 |