Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 03-06-2020 07:37:13

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3802

Su des écarts......

Soit n nombres entiers distincts > 0, à chacun est attribué un rang de 1 à n.

Il faut montrer que le produit des écarts entre tous les rangs pris 2 à 2 divise le produit des écarts entre tous les nombres pris 2 à 2.

Il y a une solution accessible Lycée. 

Bonne recherche

  • |
  • Répondre

#0 Pub

 #2 - 15-06-2020 19:52:40

Sydre
Professionnel de Prise2Tete
Enigmes résolues : 15
Messages : 245

Sur ddes écarts......

Salut smile

Soit [latex]P(n_1,n_2,\ldots ,n_n)[/latex] le produit des écarts des nombres [latex]n_1,n_2,\ldots ,n_n[/latex]. On note [latex]\Delta_{i,j}[/latex] l'écart entre les nombres de rang [latex]i[/latex] et [latex]j[/latex].

Par définition :
[TeX]P(n_1,n_2,\ldots,n_n)=\prod_{i=1}^{n-1}\prod_{j=i+1}^n\Delta_{i,j}=P(n_1,n_2,\ldots,n_{n-1})\prod_{i=1}^{n-1}\Delta_{i,n}[/TeX]
En particulier le produit des écarts des rangs vaut [latex]P(1,2,\ldots,n)[/latex].

Considérons un facteur premier [latex]p[/latex] de [latex]P(1,2,\ldots,n)[/latex] et cherchons à dénombrer les écarts de [latex]P(n_1,n_2,\ldots ,n_n)[/latex] divisibles par [latex]p[/latex]. Un écart [latex]\Delta_{i,j}[/latex] est divisible par [latex]p[/latex] si et seulement si [latex]n_i\mod p=n_j\mod p[/latex].

On cherche les cas les plus défavorables, c'est à dire les cas donnant le plus petit nombre d'écarts [latex]\Delta_{i,j}[/latex] divisibles par [latex]p[/latex]. En regardant la relation récurrente donnant [latex]P(n_1,n_2,\ldots ,n_n)[/latex] on remarque que pour minimiser l'apport en [latex]p[/latex] dû à l'ajout du [latex]n[/latex]-ème nombre il suffit que celui-ci ait un reste différent de ses prédécesseurs lorsque divisés par [latex]p[/latex]. Couplé au fait que [latex]P[/latex] soit invariant par permutation on en déduit les cas les plus défavorables :
[TeX]P(\underbrace{1+N}_{\mod p=m_1},\underbrace{2+N}_{\mod p=m_1+1},\ldots,\underbrace{n+N}_{\mod p=m_1+(n-1)\mod p}),\,N\in\mathbb{N}[/TeX]
Comme [latex]P(1,2,\ldots,n)=P(1+N,2+N,\ldots\,n+N)[/latex] on en déduit que dans les cas les plus défavorables il y a tout juste autant de fois [latex]p[/latex] dans la décomposition en facteurs premiers de [latex]P(1,2,\ldots,n)[/latex] que dans la décomposition en facteurs premiers de [latex]P(n_1,n_2,\ldots,n_n)[/latex]. Ceci étant vrai pour tous les facteurs premiers de [latex]P(1,2,\ldots,n)[/latex], la divisibilité de l'un par l'autre est assurée dans tous les cas.

 #3 - 17-06-2020 23:24:08

Sydre
Professionnel de Prise2Tete
Enigmes résolues : 15
Messages : 245

ur des écarts......

Petit bonus pour ceux que ça intéresse j'ai retrouvé la démonstration originale du théorème en question.

Ma version fait un peu édulcorée à coté mais le principe de base est le même smile

 #4 - 18-06-2020 09:22:18

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3802

Sru des écarts......

J'avais cette idée-là en tête, mais pas sûr de la justesse du raisonnement....

On établit un triangle des écarts des rangs : entre 2 rangs voisins, entre 2 rangs sur 2, entre 2 rangs sur 3,.......

Pour 10 nombres :

1.1.1.1.1.1.1.1.1
.2.2.2.2.2.2.2.2
..3.3.3.3.3.3.3
...4.4.4.4.4.4
.....5.5.5.5.5
......6.6.6.6
.......7.7.7
........8.8
.........9

Si on regarde ce qu'il se passe modulo n'importe quel nombre x compris entre 1 et 9, on donne à chaque nombre sa valeur modulo x. Par exemple modulo 7, le triangle des écarts de rang donne :

1.1.1.1.1.1.1.1.1
.2.2.2.2.2.2.2.2
..3.3.3.3.3.3.3
...4.4.4.4.4.4
.....5.5.5.5.5
......6.6.6.6
.......0.0.0
........1.1
.........2

Le triangle des écarts entre nombres modifie la valeur 1 du haut. Or c'est la valeur du nombre de la 1ère ligne qui donne toutes les autres valeurs du tableau. Par exemple, le 3ème 1 première ligne influence ce parallélogramme :

....1.
...2.2.
..3.3.3
...4.4.4
.....5.5.5
......6.6.6
.......0.0.0
........1.1
.........2

Ajouter ou ôter +1 en haut de tableau Fait monter ou descendre d'une ligne toutes les valeurs du tableau. 

....2.
...3.3.
..4.4.4
...5.5.5
.....6.6.6
......0.0.0
.......1.1.1
........2.2
.........3

On ne peut pas faire baisser le nombre de 0 initial dans cette manœuvre.

En généralisant, on se rend compte que le nombre des valeurs modulo x donné est toujours le minimum dans le triangle des écarts entre rangs.

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 10 moutons, ils meurent tous sauf 9, combien en reste-t-il ?

Sujets similaires

Sujet Date Forum
P2T
13-11-2012 Enigmes Mathématiques
P2T
0.9999999999999999 par melina555
16-09-2012 Enigmes Mathématiques
P2T
Carrément impair par Vasimolo
05-06-2011 Enigmes Mathématiques
P2T
Etoile par looozer
14-07-2010 Enigmes Mathématiques
P2T
Une suite aléatoire par Varzmir
11-05-2017 Enigmes Mathématiques
P2T
12-09-2010 Enigmes Mathématiques
P2T
Vous avez une petite faim ? par SaintPierre
02-08-2011 Enigmes Mathématiques
31-08-2016 Enigmes Mathématiques
P2T
Le troupeau en marche par unecoudée
07-11-2014 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete