Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 25-11-2010 18:21:33

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

cas de boylets

Devant le château de Peyrepertuse,des boulets de canon sont disposés en tas de forme pyramidale,avec un boulet au sommet de chaque tas,chaque boulet reposant donc sur quatre autres.
Avec 100 boulets,combien de tas doit-on faire au minimum,sachant qu'ils ne doivent pas tous être identiques?



Annonces sponsorisées :

 
Réponse :
  • |
  • Répondre

#0 Pub

 #2 - 25-11-2010 18:30:10

emmaenne
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3058
Lieu: Au sud du Nord

vas de boulets

Cette énigme est en rapport avec certains joueurs de P2T?


Dans le cadre de la quinzaine du beau langage, ne disez pas disez, disez dites. (Julos Beaucarne)

 #3 - 25-11-2010 18:52:09

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

cas de boulzts

Je ne comprend pas ta question Emmaenne?

 #4 - 25-11-2010 18:53:36

racine
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1224

Cas d boulets

J'ai un soucis avec la case réponse ou la question je ne sais pas.
D'après ta question c'est 5 tas: Un tas de 55, un tas de 30 et trois tas de 5.
Si on considère que 1 boulet constitue une pyramide, on aurait alors :
55, 30, 14 et 1.
Ou bien, les tas doivent être tous différents ce qui n'est pas la même chose que :"sachant qu'ils ne doivent pas tous être identiques"

 #5 - 25-11-2010 18:55:28

FRiZMOUT
Verbicruciste binairien
Enigmes résolues : 49
Messages : 2209

cas de boylets

Si on enlève le cas de la pyramide avec un seul boulet, et qu'on doit bien tomber sur 100 pile, je dirais 5 tas, avec 55, 30, 5, 5 et 5 boulets ou 30, 30, 30, 5 et 5.

 #6 - 25-11-2010 19:02:55

franck9525
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1922
Lieu: UK

Ca sde boulets

je fais 1 tas de 30 boulets (1+4+9+16) et 14 tas de 5 boulets = 15 tas au maximum pour 100 boulets

ou alors 100 = 55 + 33 + 3 * 5 pour un minimum de 5 tas


The proof of the pudding is in the eating.

 #7 - 25-11-2010 19:17:53

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

Cas d eboulets

Frizmout et Racine(encore lui lol) ont trouvé juste bien joué.

 #8 - 25-11-2010 20:36:19

scrablor
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 931

Cas de bouelts

Les pyramides possibles utilisent 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370... boulets !

Si on doit en utiliser 100, rien de mieux que 55+30+14+1 donc 4 pyramides.

Mais à quoi bon dire qu'ils ne sont pas tous identiques ?


Celui qui fuit les casse-tête ne vaut pas un clou.

 #9 - 25-11-2010 20:51:13

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

Cas de bouletts

Tu te trompe Scrablor.

 #10 - 25-11-2010 22:03:43

Via78
Visiteur

cas de bouletq

Je pense, si j'ai compris la question, qu'il y a 4 tas au minimum:
     -un de 4^3=64
     -deux de 16
     -un de 4
ce qui fait en tout 100
merci de me corriger.

 #11 - 25-11-2010 22:24:59

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

Cas de boulet

Via78 faux.

 #12 - 25-11-2010 23:00:36

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,469E+3

Cas de bouets

les nombre s de boulets pour former des tas de hauteur h  forment la suite des carrés Somme de x= (1 à h) de x^2

H= 1 : 1
h = 2 : 1 + 2 ^2 = 1+4 = 5
h=3 : 1 + 4 + 9
...

La suite est donc  : 1 5  14 30 55 91 ...

au moins deux tas sont nécessaires pour avoir deux tailles de boulets différentes.

La seule somme à 100 possible est 55 + 30 +14 +1 = 100 donc, je dirais quatre tas de hauteur 1 3 4 et 5

EDIT: si il n'y a pas de tas de 1 boulet, je trouve 100=55+30+5+5+5

Il faut donc au minimum 5 tas de hauteur 5, 4, 2, 2 et 2

 #13 - 25-11-2010 23:03:11

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

Cas de boulet

Je ne comprends pas grand chose à cet énoncé.
Pourquoi le fait qu'il y a un boulet en haut entraine qu'il repose sur 4 autres (le "donc").
Ensuite la question est-elle combien doit-on faire de tas au minimum pour utiliser TOUS les boulets? Parce que sinon à la question: combien doit-on faire de tas au minimum, je réponds: 0 si je n'ai pas envie, ou 1 ou ce qu'on veut. D'ailleurs la case réponse ne valide aucun chiffre écrit en chiffre.
A-t-on le droit de faire des tas de 1 boulet?
Enfin une pyramide peut-être à base carrée ou triangulaire ou autre. En supposant que c'est à base carrée (la référence à 4 boulets) et qu'on peut faire plusieurs étages (pas clair), je dirais:

Les pyramides à 1 étage on 1 boulet
Celles à 2 étages: 1+4=5 boulets
Celles à 3 étages: 1+4+9=14 boulets
4: 14+16=30
5: 30+25=55
6: 55+36=91

100=91+5+1+1+1+1
100=55+30+14+1=55+30+5+5+5=55+14+14+14+1+1+1
100=30+30+30+5+5=30+14+14+14+14+14
Les solutions sans 30 nécessitent plus de nombres.

La façon d'obtenir une sommet égale à 100 avec le plus petit nombre de termes est donc: 4 tas de 55, 30, 14 et 1 boulets.
Si on n'a pas le droit au tas de 1 boulet, les solutions les plus petites sont: 30+30+30+5+5 et 55+30+5+5+5

Merci pour cette énigme. Un petit effort de précision dans l'énoncé pour la prochaine sera le bienvenu smile
Pourquoi la case réponse ne valide-t-elle aucun nombre?

 #14 - 26-11-2010 00:35:04

Klimrod
Elite de Prise2Tete
Enigmes résolues : 40
Messages : 3762
Lieu: hébesphénorotonde triangulaire

Cas de bouulets

Bonsoir,

Hauteur 1 =>              1 boulet
Hauteur 2 =>  1+ 4 =  5 boulets
Hauteur 3 =>  5+ 9 = 14 boulets
Hauteur 4 => 14+16=30 boulets
Hauteur 5 => 30+25=55 boulets
Hauteur 6 => 55+36=91 boulets

On peut répartir 100 boulets en 55+30+14+1, soit 4 tas différents.

Klim.


J'ai tant besoin de temps pour buller qu'il n'en reste plus assez pour bosser. Qui vit sans folie n'est pas si sage qu'il croit.

 #15 - 26-11-2010 02:58:27

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

Cas de buolets

Si je visualise bien le problème, dans une pyramide donnée un boulet repose sur 4, qui reposent sur 9, qui reposent sur 16, etc.

On somme joyeusement les carrés pour avoir le nombre de boulets en fonction du nombre d'étages :

1 --> 1
2 --> 5
3 --> 14
4 --> 30
5 --> 55
6 --> 91

Je trouve 55 + 30 + 14 + 1 comme plus courte somme possible. Il me faut quatre pyramides au minimum.


PS : pourquoi précises-tu que les pyramides ne doivent pas toutes être les mêmes ? Vu qu'on cherche le plus petit nombre de pyramides, ça tombe sous le sens... Soit tu voulais dire "elles n'ont pas toutes la même hauteur", soit tu signifiais "elles ont toutes des hauteurs différentes"... ce qui n'a rien à voir. Mais dans les deux cas, le plus petit nombre de pyramides possible respecte cette condition...

PS2 : la case réponse est censée valider une réponse trouvable...


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #16 - 26-11-2010 10:19:31

Milou_le_viking
Professionnel de Prise2Tete
Enigmes résolues : 30
Messages : 434

Cs de boulets

Salut,

La base d'une pyramide de n étages fait n² boulets, l'étage suivant compte (n-1)² boulets, etc
Il faut donc sommer les carrés parfais de 1, 2, ..., et n.

Pour
n=1, 1 boulet.
n=2, 5 boulets.
n=3, 14 boulets.
n=4, 30 boulets.
n=5, 55 boulets.
n=6, 91 boulets.

Pour ranger 100 boulets en pyramide, je dois utiliser au minimum 4 pyramides, une de 1 étage (1 boulets), une de 3 étages (14 boulets), une de 4 étages (30 boulets) et une de 5 étages (55 boulets).
1+14+30+55=100.

Comme 4 n'est pas accepté comme réponse, je suppose que c'est pas bon, mais je vois pas comment faire autrement.

Si je considère qu'un tas de 1 étages ne constitue pas une pyramide, alors il faut 5 tas, 5+5+30+30+30=100.
Mais ça marche pas non plus.

EDIT: en lettre ça marche mieux...

 #17 - 26-11-2010 10:57:56

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1431

cad de boulets

Autrement dit, en utilisant des nombres parmi 1,5,14,30,55,91; comment peut on faire 100.
Aucun tas d'un seul boulet ne peut faire 100. Pour 2 tas, il faudrait un nombre et son complémentaire sur 100, ce qu'on n'a pas. Pour 3 tas, on est obligé d'utiliser soit 91 (mais pour faire 9 en 2 tas, on est obligé de prendre 5 et on n'a pas 4), soit 55 (mais pour faire 45 en 2 tas, on est obligé d'utiliser 30 et on n'a pas 4).
Par contre en 4 tas, on peut faire 55+30+14+1

 #18 - 26-11-2010 12:58:38

RL
Visiteur

cas de voulets

Quatre (1+14+30+55).

 #19 - 26-11-2010 14:35:35

papiauche
Sa Sainteté
Enigmes résolues : 49
Messages : 2124

cas dz boulets

Le premier tas peut être de 1 boulet.
Le deuxième de 5 boulets.
Le troisième a une base de 3*3 boulets et fait donc 14 boulets.
Le quatrième a une base de 4*4 boulets et fait donc 30 boulets.
Le cinquième 55 boulets.
Le sixième 91 boulets.

100 = 55 + 30 + 14 + 1

Donc quatre tas suffisent de hauteur 5, 4, 3 et 1 boulets.


"Je ne lis jamais un livre dont je dois faire la critique. On se laisse tellement influencer." O. Wilde

 #20 - 26-11-2010 17:13:50

darkcod03100
Passionné de Prise2Tete
Enigmes résolues : 21
Messages : 68

cas de boulrts

Escusez-moi j'ai mal fait l'énigme j'aurais déja du précisé que 1 tas est composé de plusieur boulets donc le cas d'une pyramide de 1 boulet est suprimé et ilogique (sa ne ferais pas une pyrame si il y aurais que un boulet) et ensuite je suis vraiment désolé pour la case réponse il faut marqué "minimum X tas".

 #21 - 26-11-2010 18:10:27

Yannek
Passionné de Prise2Tete
Enigmes résolues : 10
Messages : 60

czs de boulets

La base d'un pyramide de hauteur n compte n² boulets.
[TeX]\begin{array}{c|c|c}
n &n^2 &\sum_{k=1}^nk^2 \\
\hline
1 &1 &1 \\
2 &4 &5 \\
3 &9 &14 \\
4 &16 &30 \\
5 &25 &55 \\
6 &36 &91 \\
7 &49 &140 \\
\end{array}[/TeX]
Pour n>6, la pyramide compte plus de 100 boulets, et on exclu le cas n=1 par hypothèse. On doit chercher la somme composée d'un nombre minimal de termes parmi 5,14,30,55 et 91 qui donne 100. Ces sommes sont :

55+30+3*5=100 (5 termes)
55+9*5= 100 (10 termes)
3*30+2*5=100 (5 termes)
2*30+8*5=100 (10 termes)
30+5*14=100 (6 termes)
30+14*5=100 (15 termes)
5*14+6*5=100 (11 termes)
20*5=100 (20 termes, mais exclu car ils sont tous identiques).

Le nombre minimal de pyarmide est 5 (une de hauteur 5, une de hauteur 4 et 3 de hauteur 2 ou  3 de hauteur 4 et 2 de hauteur 5)

 #22 - 27-11-2010 11:08:26

NickoGecko
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1744

Cas de boules

Bonjour,

On peut avoir des pyramides ...

>à deux étages = 1 + 4 = 5 boulets
> à trois étages = 1 + 4 + 9 = 14 boulets (on ajoute 3²)
> à quatre étages = 14 + 16 = 30 boulets
> à cinq étages = 30 + 25 = 55 boulets
> à six étages = 55 + 36 = 91 boulets

donc avec exactement 100 boulets, on peut faire
> trois tas de 30 et deux tas de 5
> ou un tas de 55 + un tas de 30 + trois de 5

... Minimum 5 tas ? ...

oh le boulet !


Il aurait pu pleuvoir, con comme il est ! (Coluche)

 #23 - 27-11-2010 14:09:19

RL
Visiteur

Cas de boulest

darkcod03100 a écrit:

combien de tas doit-on faire au minimum,sachant qu'ils ne doivent pas tous être identiques?

J'aimerais qu'on m'expliquât en quoi les compositions  "55, 30, 5, 5 et 5" ou "30, 30, 30, 5 et 5" respectent l'énoncé.

Si on refuse la pyramide unitaire, il n'y a pas de solution, non ?

--
Le RâLeuR

 #24 - 27-11-2010 14:19:55

FRiZMOUT
Verbicruciste binairien
Enigmes résolues : 49
Messages : 2209

Csa de boulets

Elles respectent parfaitement l'énoncé. Il suffit de savoir lire.

 #25 - 27-11-2010 14:29:34

franck9525
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1922
Lieu: UK

Cas de bboulets

Le schtroumpf n'est pas seulement grognon, il est aussi de mauvaise foi. lol


The proof of the pudding is in the eating.

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 19ème, en quelle position êtes-vous ?

Sujets similaires

Mots clés des moteurs de recherche

Mot clé (occurences)
Pyramide de boulets (8) — Solution pyramide 20 boulets (5) — Suite 1 5 14 30 (3) — Casse tete boulet de canon (2) — Calcule le nombre de bille dans une pyramide a 100 etage (2) — Solution la pyramide de boulet (2) — Casse tete pyramide 20 boules solution (2) — Avec 100 bouletscombien de cas doit-on faire au minimumsachant qu ils ne doivent pas tous etre identiques? reponse (2) — Pyramide de boulet casse-tete (2) — Nombre de boules d une pyramide a etages (2) — Devant le chateau de peyrepertusedes boulets de canon sont disposes en tas de forme pyramidaleavec un boulet au sommet de chaque taschaque boulet reposant donc sur quatre autres. avec 100 bouletscombien de tas doit-on faire au minimumsachant qu ils ne doivent pas tous etre identiques? (2) — Hauteur pyramide 55 boulets (2) — Boule hauteur pyramide (1) — Mini casse tete pyramide de boulet (1) — Casse-tete piramyde de boulet (1) — Comment calculer la hauteur d une pyramide en boulet de canon (1) — Casse tete piramide de boulets (1) — Combien faut il de boules pour une pyramide de 100 etages (1) — Pyramide de boulet a n etage (1) — Pyramide a base carree utilisant 29 boulets (1) — Pyramide de mini boulet (1) — Casse tete boulets de canon (1) — Solution enigme tas de boulets (1) — Casse tete la pyramide aux boulets solution (1) — La pyramide de boulet (1) — En cas enigmes (1) — La pyramide de boulets (1) — Pyramide de boule a base carree (1) — Pyramide boulet (1) — Solution casse tete pyramide 20 boules (1) — Casse tete boulets de canon solution (1) — Casse tete les boulets de canon (1) — Hauteur d une pyramide de boulet (1) — Pyramide boulet de canon enigme (1) — Solution casse tete pyramide boule (1) — 15143055 (1) — Combien tas de 5 parmis 15 enigme (1) — Enigme boulet (1) — Enigme pyramide de boules (1) — Pyramides triangulaire boulets canon (1) — Solution casse tete pyramide 20 boule (1) — Hauteur pyramide boulets (1) — Hauteur d une pyramide de boulets (1) — Suites numirique (1) — Hauteur d une pyramide de boulet a n etage (1) — Devinette mathematique suite 1-5-14-30-55 (1) — Pyramide de boulets casse tete (1) — Enigme boulets de canon (1) — Boulets en tas (1) — Casse tete + pyramide de boulets + solution (1) — Solution pyramide boule (1) — 1 5 14 30 55 (1) — Solution pyramide boule (1) — Maths pyramide 55 boulets (1) — Pyramide de billes a 10 niveaux (1) — Boulets (1) — Suite mathematique 1 5 14 30 (1) — Solution casse-tete boules pyramide (1) — Compter boulets dans une pile (1) — Tas de boulets formule (1) — Solution devant le chateau de peyrepertusedes boulets de canon sont disposes en tas de forme pyramidaleavec un boulet au sommet de chaque taschaque boulet reposant donc sur quatre autres. avec 100 bouletscombien de tas doit-on faire au minimumsachant qu ils ne doivent pas tous etre identiques? (1) — Devinette canon boulet (1) — Calculer le nombre de bille en pyramide (1) — Solution casse tete pyramide de boulets (1) — Pyramide de boule enigme (1) — Cas d enigme (1) — Solution casse tete boulet canon (1) — Casse tete boulets solution (1) — Casse tete bois boulets de canon (1) — Solution la pyramide de boulets (1) — Pyramide de boulet sur canons (1) — Casse tete la pyramide de boulets (1) — Combien faut-il de billes pour realiser une pyramide a 10 niveaux (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete