Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 27-11-2010 13:46:23

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

Prrimitive n-ième de ln(x)

Bonjour à tous,

Ce n'est pas vraiment une énigme, mais comment exprimer une primitive n-ième de ln(x) en fonction de n ?



Annonces sponsorisées :
  • |
  • Répondre

#0 Pub

 #2 - 27-11-2010 16:21:52

Fireblade
Habitué de Prise2Tete
Enigmes résolues : 0
Messages : 34

Primitive n-ème de ln(x)

Avec les calculs des premières primitives, on trouve une relation que l'on peut démontrer par récurrence : la n-ième primitive de ln(x) est :
x^n/n!*ln(x)+P(x) ou P est un polynôme de degré n dont le terme de plus haut degré est -(n+1)/[2(n-1)!].
Par contre le polynôme P en lui-même me semble bien compliqué et je ne vois pas "de suite" de relation de récurrence facile pour avoir les termes!
Pourquoi avoir besoin de la n-ième primitive de ln(x) en dehors d'une recherche purement théorique (aussi belle que soit la démarche...)?

 #3 - 27-11-2010 16:50:07

Yannek
Passionné de Prise2Tete
Enigmes résolues : 10
Messages : 60

Primiitive n-ième de ln(x)

[TeX]F_n(t)=\frac{t^n}{n!}\left(\ln t-\sum_{k=1}^n\frac 1k\right)[/TeX]

 #4 - 27-11-2010 16:50:29

franck9525
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1932
Lieu: UK

Primitive n-ième de ln()x

[TeX]\frac{1}{n!}x^n ln(x)+\frac{a}{(n!)^3}x^n[/TeX]
a ne me vient pas...

successivement
-1, -6, -66, -1200


The proof of the pudding is in the eating.

 #5 - 27-11-2010 17:09:16

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

primitive n-ième de mn(x)

Une excellente réponse de Yannek !

Franck, ta formule a l'air correcte (en tout cas, tes 4 premières valeurs sont bonnes), mais toute la difficulté réside justement dans le calcul de ton a.

Fireblade, c'est un calcul juste pour s'amuser. ça demande un niveau de milieu de première année de classe prépa je pense. Bien que des outils de niveau de terminale soient suffisants.

 #6 - 27-11-2010 17:50:47

Filto
Amateur de Prise2Tete
Enigmes résolues : 46
Messages : 4

primitive n-ième de ln(c)

(-1)^(n+1) * (n-1)! / (x^n)

 #7 - 27-11-2010 18:06:24

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

Priimitive n-ième de ln(x)

Non Filto, ce n'est pas ça. J'ai dit primitive, pas dérivée.

 #8 - 27-11-2010 18:51:19

Filto
Amateur de Prise2Tete
Enigmes résolues : 46
Messages : 4

Primitive n-ième de nl(x)

Ah oui, en effet, je confond toujours les deux ^^.

Je suis en train de le refaire, je pense que je suis pas loin du but, j'éditerai quand j'aurais trouvé. (Si j'y parviens ^^)

 #9 - 27-11-2010 19:08:07

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1563

Primitive n-ième d eln(x)

Les premières primitives sont
x.ln(x) - x
x^2/2 * ln(x) -3x^2/4
x^3/6 * ln(x) - 11x^3/36

Hypothèse: la primitive n-ième est de la forme suivante
(x^n)/n! * ln(x) - A(n)*x^n/(n!)^2
Dans cette expression, A(n) est une valeur qui dépend de n

Hypothèse qui se vérifie aux premiers rangs.

Posons U = ln(x), V' = (x^n)/n!; on a
V = (x^(n+1))/(n! * (n+1)) = x^(n+1)/(n+1)!
U' = 1/x
U'V = (x^n)/(n+1)!
Donc une primitive de U'V est 1/(n+1) * x^(n+1)/(n+1)!
Donc une primitive de UV' est x^(n+1)/(n+1)! * ln(x) - 1/(n+1) * x^(n+1)/(n+1)!

Reste à calculer une primitive de A*x^n/(n!)^2
Elle vaut A*x^(n+1)/(n! * (n+1)!)
Donc notre primitive n+1-ième vaut

x^(n+1)/(n+1)! * ln(x) - 1/(n+1) * x^(n+1)/(n+1)! - A*x^(n+1)/(n! * (n+1)!) =
x^(n+1)/(n+1)! * ln(x) - (x^(n+1) [n! + A*(n+1)]) /((n+1)!^2)

CQFD.
Au passage, A(n+1) = n! + A(n) * (n+1),avec A(0) = 0

 #10 - 27-11-2010 19:16:11

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

Prmiitive n-ième de ln(x)

Scarta, tu es sur la bonne voie. Je suis passé par la même méthode que toi. Mais tu peux encore simplifier et faire disparaître ta suite A(n) en l'exprimant simplement en fonction de n.

 #11 - 27-11-2010 19:31:57

MthS-MlndN
Hors d'u-Sage
Enigmes résolues : 49
Messages : 12,414E+3
Lieu: Rouen

primitive n-ième dr ln(x)

Pfiouh.

Je vais partir d'une primitive de [latex]\ln(x)[/latex], à savoir [latex]x \ln(x) - x[/latex]. Je cherche de la même façon une primitive de [latex]x \ln(x) - x[/latex] :
[TeX]\left( \frac{x^2}{2} \ln(x) \right)' = x \ln(x) + \frac{x}{2} \Rightarrow \left( \frac{x^2}{2} \ln(x) - \frac{3 x^2}{4} \right)' = x \ln(x) - x[/TeX]
Une deuxième primitive de [latex]\ln(x)[/latex] est donc [latex]\frac{x^2}{2} \left( \ln(x) - \frac{3}{2} \right)[/latex].

Je me permets de supposer qu'il faudra un terme en [latex]\frac{x^3}{6} \ln(x)[/latex] la fois suivante (pour retomber sur le terme en [latex]\frac{x^2}{2} \ln(x)[/latex] en dérivant), et on ajoutera un terme en [latex]x^3[/latex] sur quelque chose pour virer l'autre terme obtenu en dérivant [latex]\frac{x^3}{6} \ln(x)[/latex]...

Pour la primitive n-ième, on obtiendra donc probablement, selon ce même schéma, quelque chose du genre [latex]\frac{x^n}{n!} \left( \ln(x) - a_n \right)[/latex] avec [latex]a_n \in \mathbb{R}[/latex]. On va dériver ce truc :
[TeX]\left( \frac{x^n}{n!} \left( \ln(x) - a_n \right) \right)' = \frac{x^{n-1}}{(n-1)!} \left( \ln(x) - a_n \right) + \frac{x^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!} \ln(x) + (1 - n a_n) \frac{x^{n-1}}{n!}[/TeX]
Euh... récurrence ? La flemme de faire ça ce matin hmm


Podcasts Modern Zeuhl : http://radio-r2r.fr/?p=298

 #12 - 27-11-2010 19:53:19

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

Primitive n-ième de lnn(x)

Mathias, tu y es presque. En deux lignes de calculs supplémentaires (factorisation), la valeur de ta suite an devient évidente.

 #13 - 28-11-2010 08:55:12

Fireblade
Habitué de Prise2Tete
Enigmes résolues : 0
Messages : 34

primitive n-ième se ln(x)

Nombrilist : ma réponse n'est pas bonne? Une primitive est de la forme [latex]\frac{x^n}{n!}-\frac{x^n}{n!}\sum_{i=1}^{n}\frac{1}{i}[/latex] et TOUTES les primitives s'obtiennent en ajoutant un polynôme de degré n-1 (dont la dérivé n-ième sera nulle)?
Pour la démo, la récurrence ne pose pas de soucis, mais est longue à taper... big_smile

Edit : grosse erreur sur la somme des inverses confondue avec la somme des entiers...

 #14 - 28-11-2010 11:08:29

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1563

Primitive n-ième de l(nx)

Ben mon A(n) tu peux l'écrire sous forme d'une somme ou encore d'un nombre de Stirling, mais je vois pas bien l’intérêt, étant donné qu'on ne peut pas le calculer sans passer par les termes précédents...

 #15 - 28-11-2010 11:24:16

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

primitibe n-ième de ln(x)

Bonne réponse de Fireblade à une erreur d'étourderie près smile.

Scarta, l'expression de A(n) en fonction de n est assez simple. Mathias touchait au but.

 #16 - 28-11-2010 12:12:47

Klimrod
Elite de Prise2Tete
Enigmes résolues : 40
Messages : 3823
Lieu: hébesphénorotonde triangulaire

Primitiev n-ième de ln(x)

Nombrilist a écrit:

Mathias touchait au but

Ah bon, Mathias s'est mis à toucher aux buts ? roll

Mauvaise contrepèterie, je sors...  ---->[ ]


J'ai tant besoin de temps pour buller qu'il n'en reste plus assez pour bosser. Qui vit sans folie n'est pas si sage qu'il croit.

 #17 - 03-12-2010 10:15:55

Nombrilist
Expert de Prise2Tete
Enigmes résolues : 10
Messages : 566

Primitvie n-ième de ln(x)

En repartant de la dérivée effectuée par Mathias:
[TeX]\left( \frac{x^n}{n!} \left( \ln(x) - a_n \right) \right)' = \frac{x^{n-1}}{(n-1)!} \left( \ln(x) - a_n \right) + \frac{x^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!} \ln(x) + (1 - n a_n) \frac{x^{n-1}}{n!}[/TeX]
On remarque [latex] a_n =a_{n-1} +\frac1n[/latex]

Il n'est alors pas compliqué de retrouver:
[TeX]F_n(t)=\frac{t^n}{n!}\left(\ln t-\sum_{k=1}^n\frac 1k\right)[/TeX]
On pouvait aussi facilement remarquer en factorisant que [latex]xln(x)-x = x(ln(x) - 1)[/latex] et qu'une primitive doit être:
[TeX]\frac {x^2}2(ln(x)-1)' = xln(x)- x +\frac 12x[/TeX]
que l'on corrige par [latex]-\frac 12[/latex]
[TeX]\frac {x^3}3(ln(x)-\frac 32)' = \frac {x^2}2(ln(x)-\frac32+\frac13)[/TeX]
que l'on corrige par [latex]-\frac 13[/latex]

La suite vient tout seul.

Bon, ça c'est la solution (probablement utilisée par Yannek) que j'ai trouvée après avoir résolu le problème façon Scarta. Il y avait un moyen de résoudre la suite développée par Scarta, mais c'est long à détailler.

 #18 - 26-08-2011 08:19:00

Yanyan
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 509
Lieu: Lille si j'y suis

Primitive n-ième e ln(x)

Je propose une approche pour le calcul des primitives n-ième en général. Tout est formel.

Soit [latex]F_n[/latex] une primitive n-ième de  [latex]f[/latex] alors introduisons [latex]y(x)=\sum_{n\geq 0}F_n(x)t^n[/latex] alors [latex]y'(x)=f'(x)+\sum_{n\geq 1}F_{n-1}(x)t^n[/latex] d'ou l'équation différentielle

[latex]y'(x)=ty(x)+f'(x)[/latex]. On sait la résoudre à coup d'exponentielle mais attention tout doit être écrit en série entière car c'est formel.

Je ne traite pas l'exemple car on à déjà la solution.


Un mathématicien complet est topologiquement fermé!
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 42ème, en quelle position êtes-vous ?

Sujets similaires

Sujet Date Forum
P2T
04-04-2011 Enigmes Mathématiques
P2T
Echecs 13 par Vasimolo
26-08-2012 Enigmes Mathématiques
30-11-2009 Enigmes Mathématiques
P2T
Echecs à tire-larigot par Clydevil
27-12-2015 Enigmes Mathématiques
P2T
Problème geometrique par nurarihyon
28-12-2009 Enigmes Mathématiques
P2T
30-04-2018 Enigmes Mathématiques
P2T
Menottes et topologie par Clydevil
20-12-2011 Enigmes Mathématiques
P2T
Gâteau 22 par Vasimolo
06-08-2010 Enigmes Mathématiques
P2T
29-01-2014 Enigmes Mathématiques

Mots clés des moteurs de recherche

Mot clé (occurences)
Derivee nieme de ln (30) — Derivee nieme ln (17) — Primitive nieme (13) — Derivee nieme de ln(x) (11) — Derivee nieme ln x (11) — Primitive de ln x (10) — Primitive de (lnx)^n (9) — Xnxxxxxxxxxx1 (8) — Primitive de (ln x)^n (7) — Xnxxxxxxxxxx (7) — Derivee n ieme de ln x (6) — Primitive n-ieme (6) — Pourquoi lnx = primitive de 1/x (6) — Primitive de (ln(x))^n (6) — La preuve de la derivee n-ieme de la fonction ln(x) par recurence (6) — Integrale n-ieme (6) — Derivee n ieme de ln (6) — Integrale nieme (6) — Primitive de ln(1+x^n) (5) — Primitive ln(1+x^n) (5) — Derivee nieme de lnx (5) — Primitive n ieme (5) — Derivee n-ieme de ln (5) — Primitive ln x (5) — Derive nieme de ln x (5) — Primitive ln (5) — Xn xxxxxxxxxxxxxxxxxxxxxxxx (5) — Primitive de ln(x)^n (5) — Primitive de lnx (4) — (lnx/x^2)^n (4) — Primitive de lnx^n (4) — Primitive ln(x)^n (4) — Primitive nieme de ln(x) (4) — Derive nieme de lnx (3) — Primitive de ln 2 (3) — Ln x (3) — Integrale x.ln(x) (3) — Primitive de (lnx)^3 (3) — Derivee n-ieme de ln(x) (3) — Montrer que integrale(ln(1+x)/x)=somme (3) — Primitives niemes (3) — Derivee n-ieme de ln x (3) — Integration de x^n/(1+x^n) (3) — Derivee de ln(x^2-1) (3) — (ln x)^n primitive (3) — Integrale n ieme (3) — Primitive ln(1-x)/x (3) — Derive de xlnx (3) — Integrale de ln(1+x)/x (3) — Primitives de 36 ln(x) (2) — Exercices en les primitives n-ieme (2) — La derive de (ln(p) (2) — Integrale de 1 sur x (2) — Primitive lnx-(lnx)^2 (2) — Derive xlnx-x (2) — Derivee de 3lnx regle (2) — Demonstration de ln(x) primitive de la fonction 1/x (2) — Ln(1+x)/x (2) — A traiter 1/(n+1)<ln(n+1)-ln(n)<1/n (2) — Derivee nieme de ln(1-x) (2) — Primitive de (1+(1/x))^x (2) — X^n-1*ln(1 x) (2) — Primitive de x^x (2) — Primitive nieme d une fonction (2) — Primitive n ieme de x^n/e^x (2) — Primitive 1 1+x n (2) — Primitive de x^n * ln(1+x) (2) — Somme des inverses ln demonstration integrale (2) — Derive nieme de ln(x) (2) — Montrer que x ln x est une primitive de ln x (2) — P ieme de ln(x) (2) — Primitive de x^n/n! (2) — Primitive nieme ln (2) — Calcul de la derive n ieme de xlnx (2) — Derivee de (ln x)^p (2) — Primitive lnx (2) — Les integrales n ieme (2) — X lnx x (2) — Derive n ieme de lnx (2) — Primitive xlnx (2) — Primitive de ln^2 (2) — Derivee nieme de ln lnx/x (2) — Derivee nieme ln(x) (2) — (ln(x))^n primitive (2) — Derivee nieme de ln x (2) — Primitive (ln(x))^n (2) — Xxxxxxxxxxxxxxxxxxxxxxxx.n (2) — Derivee nieme de x n-1 ln x (2) — Primitives de (lnx)^(n+1) (2) — La derivee nieme de ln (2) — Ln(x)^n (2) — Derivee n ieme ln u (2) — Derive n ieme de ln (2) — Suite lnx^n recurrence (2) — Ln (n!)/(n^x) (2) — Integrale ln(1+x)^n (2) — Xxxxxxxxxx l n (2) — Derivee n ieme ln (2) — Derivee nieme lnx (2) — Primitive 1/xlnx (2) — Derivee nieme (2) — Primitive de xlnx (2) — Exprimer integrale ln(x)/1-x sous la forme d une serie (2) — Primitive de x^3lnx (2) — Derivee de ln x (2) — Recurrence ln(n+1) x = ((-1)^l n!)/x^(x+1) (2) — Derivee nieme de ln(1+x) (2) — Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxx xxxxxxxxxx (2) — Primitive de ln(x) (2) — Primitive 1/(n*ln(n)) (2) — Derivee n-ieme lnx (1) — Ln x < x (1) — D?riv?e n ieme ln ( 1 x) (1) — X^n*ln(x) (1) — Primitive ln x ^n (1) — Integrale de x^n/(1+x) (1) — Derivee nieme polynome (1) — Resoudre x=nlnx (1) — Ln (x) recurrence (1) — Primitif lnx (1) — Derive de quelque chose donne ln x (1) — Integrer x^2 ln(x)^n (1) — Primitive x*ln x (1) — Integrale de (lnx)*(1/x) (1) — Integrale de (lnx)^n (1) — Primitive de x*lnx (1) — Primitive de (ln x)^3 (1) — (1) — Trouver une relation de recurrence pouyr la derivee nieme de ex^p(x^2) (1) — Derivee de n^n (1) — Primitive de fonction nieme (1) — (1) — Derivee n-iem ln (1) — Integrale de lnx^n (1) — [lnx]^n (1) — Integrale de 1 a e de ln^n(x) (1) — Derive nieme de ln (1) — Primitive x/(x+1) (1) — Resoudre primitive xln x+1 (1) — Derivee enieme de ln (1) — X ln^n(x) (1) — Primitive de (-n(lnx)^(n-1))/x^2 (1) — Primitive de x^n-1. 1/1+x (1) — Primitive ln p^2 (1) — Integrale (lnx)^n de 1 a e (1) — Integrale ln(1+x)/x (1) — Integrale de (x^2-1)^(-1/2) (1) — Integrale n ieme d un polynome (1) — Primitive de ln/x^2 (1) — Primitive de 1/polynome (1) — Primitive dx/x^n (1) — Primitive x^n/1-x (1) — Integrale de (lnx)^n sur (e;1) (1) — (ln(x)^n)/x (1) — Integrale recurrence ln (1) — Integrale de ln(x)^n (1) — Fonction (ln x)^n (1) — Primitive de ln ^n (1) — Integrale x^2*ln(x)^n (1) — Ln^n (x) (1) — Integral de lnx^n/x^2 (1) — Ln(an)/n (1) — Derive de 1/n!*ln^n(x)/x*x (1) — Integral de ln(x*2-1) (1) — Primitive x ln x (1) — P-ieme ln(x) (1) — Preuve primitive 1/x ln x (1) — Derivee p ieme de ln (1) — Primitive x/(1+x)^n (1) — 2eme derivee de ln(1+x) (1) — Integrale de (lnx)^p (1) — Formule de la n ieme derivee de ln (1) — X^2*(ln(x))^n (1) — Derivees nieme en 0 ln(1+x) (1) — Solution primitive lnx/x (1) — Comment trouver les primitives autour de ln (1) — Derive de 1+nln(x) / x2 (1) — Derivee n-ieme ln(x) (1) — Primitives [ln(x)]^n (1) — Enigme integrale de x (1) — Integrale ln par recurrence (1) — (lnx)^n - (lnx)^n=1 (1) — Derive n-ieme de ln(x) (1) — Primitive de 3lnx (1) — Integrale de (ln x)^3 (1) — Enigme du nieme terme (1) — E^ln 1/2^n (1) — Primitive (lnx)3 (1) — Primitive lnx/x (1) — Calcule de primitive d une derive n ieme (1) — Primitive ln(x)/x (1) — D%c3%a9riv%c3%a9e+n-i%c3%a8me+en+r%c3%a9currence (1) — Integrale de x(ln(x))^n (1) — (1) — (1) — Ln-x (1) — Resolution derivee nieme de ln(x)*x^n(-1) (1) — Intergale x^n ln (x+1) (1) — Integral de 1a e de ln(x)^n (1) — Un= a l integrale de 0 a 1 de x^nln(1+x) (1) — Math primitive nieme (1) — La derivee n ieme de ln(x) (1) — Integrale nn+1 ln(x) (1) — (1) — Primitive de 6*(ln(x)/x) (1) — Derivee n-ieme x^n*ln(x) (1) — Maths demonstration recurrence ln(x) (1) — Primitive de ln(x)/x2 (1) — L integrale lnx ^n (1) — Primitives : ln(x)^n n n (1) — Derivee nieme x^(n-1)ln(x) (1) — Derivee nieme ln(x)/x (1) — Derivee a l ordre n de ln (1) — Ln(n^n) (1) — Derivee nieme xlnx (1) — Integration de la derivee n-ieme (1) — Derive n-ieme de x^n*(1-x)^n (1) — Primitive ln(x) (1) — L integrale de ln(x)^n (1) — Primitive de 6 ln(x) (1) — Par recurrence xln(x)-x+1 (1) — Derivee nieme de x*4/(1+x)*3 (1) — Primitive 1/x^n (1) — Derivee nieme ln(1+2x) (1) — Recurrence ln(1+x^n)<x^n (1) — Primitive de lnx ^n (1) — Derive n eme de lnx (1) — Primitive de 1/(x*ln(x)) (1) — Que vaut ln 36 (1) — Primitive (x^n)/x+1 (1) — Integrale ln 0 (1) — Primitive n ieme de ln (1) — Primitive de x/(x+1) (1) — (1) — Derive de (x-1)/x * ln(x) (1) — Demonstration par recurrence ln(a^n) (1) — La derivee n-ieme de x^n (1) — Trouver la primitive x^n/n! (1) — Primitive de ln 11 (1) — Polynome lagrange lnx et ln(1+x) (1) — Integrale de x^n ln(x+1) (1) — Tout les derives n ieme (1) — (1) — Primitive ln/x (1) — Primitive de ln(n+t) (1) — Derivee de y=ln(1+x)2 (1) — Expression d?une primitive neme de f (1) — Jeu de l oie sous algobox (1) — Formule de recurrrence sur la derivee nieme de tanx (1) — Primitive x^n/n! (1) — Ln??x^n ? = ?n* ln??x (1) — Calculer la derivee n-ieme d une somme (1) — Derivee n ieme integrale (1) — E ln(x) = x (1) — Demonstration par recurrence (ln(x)) =1/x (1) — Deriver ln(t)^n (1) — Derivee nieme de ln(1+x) par recurrence (1) — Recurrence sur primitive de ln x (1) — Integrale 1/lnx (1) — (1) — Prmitive de x*ln(x)^n (1) — Primitive x^5/x^4 (1) — Derivee nieme 1/u (1) — Primitive 1/x(lnx)2 (1) — Derivee de f 1(x)=x-1-ln(x) (1) — Formule derivee n-ieme (1) — Primitive de x^2 ln x (1) — Primitive x^n+1 (1) — Derivation de (ln x)*(ln x) (1) — Primitive de x^2 * ln(x) (1) — Ln(x) + x = n (1) — Primitive de x^2/2*lnx-x^2/4 (1) — L integrale nieme (1) — Ptimitive de ln x (1) — Derivee n ieme (1) — Integrale ln n (1) — Primitive (lnx)^n (1) — La n ieme primitive (1) — Enigme nieme (1) — Une primitive de (lnx)^n (1) — F(x) =ln(1+x)-x (1) — Primitive de x^5/x (1) — Ln(x) derivee n ieme (1) — Derivee n-ieme ln x (1) — Integrale de 1 a e de (lnx)^n (1) — Calculer la derivee nieme de lnx (1) — (1) — Demonstration integrale de lnx (1) — Integrale (x * x ) (1) — Primitive de 1/x* ln x (1) — Qu elle est la d?riv?e ni?me de la fonction x (2)ln (x) (1) — Xxx nieme (1) — Integrale ln x 2 (1) — Primitive de 1/ln(t) (1) — Primitive de ln u (1) — Derivee nieme 1/x corrige (1) — La d?riv?e ni?me de lnx (1) — Primitive de x^n(lnx) (1) — Ln (x^n +1) (1) — Integraleln(1+x)/x (1) — Integral of ln^n(x+1) (1) — Ln(x+11)=x (1) — La primitive de(ln x)^n (1) — Derivee de n ln (1) — La derivee nieme de ln x (1) — Xnxxxxxxxxxxq (1) — Primitives ln( 1+x^n) (1) — Les derivees nieme de x^3ln(x) (1) — Derivees n-iemes ln(x) (1) — Suite d integrale i0= x . (ln x) ^n (1) — Derive nieme d une fonction (1) — Integrale ln(x)^n (1) — Lnx/x primitive (1) — (1) — Primitive ln(1+x) (1) — Primitive x/(a+x) (1) — Primitive (lnx)^3 (1) — Derivee n-ieme ln (1) — Primitive de 1/2 ln2 (1) — Derive de ln(x) (1) — Primitive de ln (1) — Les poulies formules et exercices (1) — Calculer derivee nieme ln x (1) — Derivee nieme de ln(x)/x^2 (1) — Derivee nieme de x^n-1*ln(1+x) (1) — Primitive n ieme de ln(-x) (1) — Integrale de ln(1+x) (1) — Derivee n de ln(x) (1) — Integrer (ln(x))^n+1 (1) — (1) — Integrale enigme (1) — Primitive ln2 (1) — Primitive de -tan x (1) — Primitive ln(x^3-x^2) (1) — Integral de x^2 * ln (1) — Calul de derivees n-emes (1) — Derivee de ln^(n) (1) — Primitive de (ln)^n/n!t (1) — Integrale (x-1)*(ln x) (1) — La derive nieme de ln x (1) — Integrer x * ln (x+1) (1) — Derivee ln(ln(ln(x))) (1) — Primitive ln 2 (1) — Deriv%c3%a9e+de+ln%28x%29+deriv%c3%a9e+n-i%c3%a8me (1) — Suite et integrale de ln (1) — Primitive de lnx ^ n-1 (1) — Derivee nieme nulle d ou polynomiale (1) — Primitive (x^n)/n! (1) — Calcul de primiitives et primitives (1) — Derivee nieme de x^n x lnx (1) — Derivee n-ieme de x^(n-1)ln(1+x) (1) — Ln x * ln x (1) — Corrige de de la derrive n ieme ln (1) — Derive de lnx/x (1) — Primitive neme du ln (1) — Derivee n-ieme de ln(x)*x^n (1) — La derivee de x^n lnx (1) — Derive nieme ln (1) — Integrale ln(x/(x^6)) (1) — Lintegrale de lnx^n (1) — Primitives avec ln (1) — Derivee de (ln x)^3 (1) — Lnx primitive (1) — Primitive1/(x*lnx) (1) — Primitive de 1/x(n+x) (1) — Ln^n/n!t (1) — 1/n! ln(x) (1) — Derive n ieme (1) — La primitive de ln(x+1) (1) — N ieme integral (1) — Integrale x^x (1) — Derivees n iemes ln (1) — Corrige integrale in = (lnx)^n suite (1) — Primitive de xlnx^n (1) — Primitives nieme (1) — Www.xnxxxxxxxxxx (1) — Primitives (ln x)^(n+1) (1) — Primitive de 2*ln(x)*e^(x) (1) — Xxxx nn (1) — N ln(x) (1) — (x*ln(a))^n/n! (1) — Primitive xlnx-x (1) — Derivee de ln de x demonstration (1) — Primitive 1+x/1-x (1) — Derivee neme ln (1) — Calculer la derivee nieme de ln(1-x) (1) — Primitive ln(1 x) (1) — Primitive de x^n*ln(x) (1) — Primitive x (ln x)^n (1) — Primitive de 1/ln(x) (1) — Primitive de x^n/x-1 (1) — La derive n ieme de ln x (1) — Primitive calculs ln polynomes (1) — Derivee n-ieme de ln^n (1) — Primitive derivee nieme (1) — Enigmes mathematiques avec la fonction ln (1) — Primitive de ln demonstration (1) — Primitive x*ln(x) (1) — Calculer la derive n ieme de x^n*(1-x^n) (1) — Primitive de ( - ln x) (1) — Integrale n 0 ln(x+3) (1) — Primitif ln(ln(x)) (1) — Primitive x^n/(1+x) (1) — Primitive de x * exp(-x) (1) — Integrale ln(x) ln(1-x) (1) — Derivee de ln polynome (1) — Primitive de ln x^2 (1) — Derivee n-ieme de lnx (1) — Derivee nieme 1 / (x+1) (1) — (1) — Calcul de la derivee n ieme de ln (1) — N * ln(x) = ln (x)^n (1) — Polynome primitif (1) — Integrale n ieme de ln (1) — Integration recurrence (ln x)^n (1) — Primitives x ln(x) (1) — Integrale lnx^p (1) — Ln(x) primitive demonstration (1) — Integrale de ln(x)*(1-x/n)^n (1) — Derivee n eme ln (1) — Primitive (ln x)^n (1) — Primitive ( ln ) ^ n (1) — Primitive lnx^3 (1) — Demonstration x^2 primitive x^3 / 3 (1) — Integral de la fonction(ln(x))^n (1) — 1/x ln x + corrige (1) — Derivee nieme de ln3-2x) (1) — Primitive de la derivee n-ieme de exponentielle (1) — Derivee nieme de ln(x)*x^n-1 (1) — Solution integrale 1/(1+x)^n (1) — Primitive de(lnx)^2 (1) — Derivee nieme recurrence (1) — Primitive de (ln x)^n+1 (1) — Primitive (1-ln x) (1) — Derive de ln (50+2 x) (1) — Derivee nieme de ln(x) (1) — Integrale x * ln x (1) — Primitive de ln (1+x^n) (1) — Integrale de e a 1 de x*(lnx)^n-1 (1) — Primitive de (ln x )^n (1) — Primitive ln(ln(x)) (1) — Primitive x^n/(1+x^n) (1) — Demontrer 1/(x)> ln(1+x)-ln(x) (1) — Integrer 1/(x ln(x)) (1) — Fonction: ln(x)=p*x*x (1) — Primitive de 1/x*(lnx)^n (1) — Primitive x^x (1) — Jeux d lnx (1) — (1) — Primitives de x^n lnx (1) — Derivee de ln(lnx) solution (1) — Lnx=123valeur de x? (1) — Derive de ln x (1) — (ln x)^n+1 integrale (1) — 2x/(x+2) ln(1+x) par recurrence (1) — Enigme expression avec but (1) — Ln x primitive (1) — Simplification de polynome de la derivee nieme de exp(1/x) (1) — Integrale de t*exp(-ln^2(t)) (1) — Calcul integrale ln (1) — Integrale lnx en latex (1) — Primitive de ln^n (1) — Integrale de x^m*(ln(x))^n (1) — Primitive n ieme comme derivee n ieme d un polynome (1) — Derivee n-iemeln(x) (1) — Primitive de ln(x)/x^2 (1) — Derive n ieme de 1/x2-1 (1) — Primitive de 1/(ln(x))^n (1) — Primitive nieme de (1-x^2)^n (1) — Derivee nieme de la fonction ln (1) — Integrales n-ieme (1) — (1) — Primtive de ln x ^n (1) — Derive n ieme de x^n(1+x)^n (1) — Integrale de derive de ln p (1) — Une primitive x.ln(x) (1) — Primitive de x ln x (1) — Integrale de 1 a e lnx^n (1) — Primitive de ((ln x)^n/n!x) (1) — Calculer la primive nieme (1) — Integrale ln x ^n (1) — Demonstration pour trouve la erive de ln (1) — X / ln(x) (1) — Derivee n-ieme de ln(x)*x^(n-1)) (1) — Derivee de lnx^n (1) — Derivee de (ln(x))^n+1 (1) — Demonstration par recurrence de ln(a^n) (1) — Primutive de lnx (1) — Primitive n eme (1) — (1) — Nieme derivee de ln x (1) — Integration x ln x^2 (1) — Derive nieme de de x^n*(1-x)^n (1) — Primitive de 1/(x+x^2) (1) — Derivees nieme ln(1+x) (1) — Derivee de (x-1)*(x-1)^1/2 (1) — Ln x recurrence (1) — Ln derivee nieme (1) — Derivee enieme ln x (1) — Soit l primitive de 1/x que vaut l(2^n) (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete