Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 25-09-2011 16:43:17

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

L'Heexa-gone

L'autre jour, notre prof de maths nous a donné un carré de papier de 10 cm de longueur exactement.
Il nous a dit:
"Maintenant, découper le plus grand hexagone régulier dans cette feuille"
Après découpage, tout le monde à répondu 5cm; ils avaient collé un côté de l'hexagone à un des côtés du carré.

Mais j'avais trouvé une mesure différente. Mon hexagone était bien le plus grand possible. Je n'ai pas triché, mon prof ne m'a pas donné une feuille plus grande, bref, j'ai suivi ses consignes.
Quel était la mesure d'un des côté de l'hexagone?
On arrondira au centième près.
(Ps: répondez par exemple 12,34cm)



Annonces sponsorisées :

 
Réponse :

Un promath- actif dans un forum actif
  • |
  • Répondre

#0 Pub

 #2 - 25-09-2011 17:34:52

L00ping007
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2003
Lieu: Paris

l'hexa-gine

[TeX]r=\frac{10\sqrt2}{\sqrt3+1}\approx5,18cm[/TeX]
En plaçant un côté de l'hexagone dans un coin, formant un angle de 45 deg avec les côtés.

 #3 - 25-09-2011 18:52:03

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

'Hexa-gone

Bravo à LOOping qui ouvre le bal!


Un promath- actif dans un forum actif

 #4 - 25-09-2011 18:52:56

franck9525
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1923
Lieu: UK

m'hexa-gone

Une belle question.
[TeX]c=\frac5 {cos(\frac{\pi} 6)}=\sqrt2 (\sqrt3 -1)\approx5.176[/TeX]


The proof of the pudding is in the eating.

 #5 - 25-09-2011 19:21:50

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

L'Hexa-one

Ok, l'approche au millième n'était pas demandée, mais c'est encore mieux.


Un promath- actif dans un forum actif

 #6 - 25-09-2011 19:38:30

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4751

l'jexa-gone

Une petite rotation de 60° autour du centre du carré et le tour est joué . On peut faire les calcul si on aime smile

http://img269.imageshack.us/img269/2881/rotationgo.jpg

Vasimolo

 #7 - 25-09-2011 19:52:54

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

l'hrxa-gone

oui,mais la longueur....


Un promath- actif dans un forum actif

 #8 - 25-09-2011 20:46:54

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3015

l'jexa-gone

En inclinant de 15° l'hexagone, on augmente son coté de 5 cm à 5,176 cm.

 #9 - 25-09-2011 21:58:48

esereth
Professionnel de Prise2Tete
Enigmes résolues : 49
Messages : 175

LHexa-gone

On peut dire que ce problème m'a donné du mal.

Pas pour le résoudre bien sûr. Le coté vaut [latex]5 \sqrt{2}(\sqrt{3}-1)[/latex] c'est à dire 5,18 cm

Mais la case réponse me refusait la réponse ....  car je ne sais pas lire.
C'est aussi ce que me disaient mes profs avant que je le dise à mon tour à mes élèves big_smile

Pour démontrer :

http://www.prise2tete.fr/upload/esereth-hexa1.png

La meilleure position consiste à prendre 2 côtés parallèles à une diagonale.

On note [latex]x[/latex] le coté de l'hexagone.

OC=[latex]5\sqrt{2}[/latex]
la hauteur du triangle équilatéral OIH est [latex] \frac{x\sqrt{3}}{2}[/latex]
La hauteur du triangle rectangle isocèle CIH est [latex]\frac{x}{2}[/latex]

On résout donc [latex] \frac{x\sqrt{3}}{2} + \frac{x}{2} =5\sqrt{2} [/latex] qui donne bien [latex]x=5 \sqrt{2}(\sqrt{3}-1)[/latex]

 #10 - 25-09-2011 22:45:08

looozer
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 663
Lieu: Belgique

L'Hexxa-gone

[latex]5 \sqrt{6}-5 \sqrt{2}[/latex] (environ 5,18cm)

 #11 - 26-09-2011 06:44:19

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

L'Hex-gone

Bravo esereth et loozer
nogdim, un petit propblème, vérifie bien que le carré fait 10cm


Un promath- actif dans un forum actif

 #12 - 26-09-2011 17:11:45

irmo322
Professionnel de Prise2Tete
Enigmes résolues : 36
Messages : 198

L'Heexa-gone

5,17cm. Il faut tourner l'hexagone de Pi/12 par rapport à ce qu'on fait les autres élèves, cela revient à faire passer une des diagonales du carré par deux sommets de l'hexagone.
Qu'a pensé ton prof de ta solution?

5,18cm oui, j'ai mal arrondi...

 #13 - 26-09-2011 17:28:08

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

L'Heexa-gone

Un tout petit chouilla au dessus et tu y est.... neutral
La solution était optimale, merci! smile


Un promath- actif dans un forum actif

 #14 - 28-09-2011 17:00:49

Promath-
Elite de Prise2Tete
Enigmes résolues : 18
Messages : 1416
Lieu: Au fond de l'univers

L'Hexa-goen

Finish!
Bravo à tous!


Un promath- actif dans un forum actif
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 20ème, en quelle position êtes-vous ?

Sujets similaires

Sujet Date Forum
P2T
Center Parc par SaintPierre
10-03-2011 Enigmes Mathématiques
P2T
Un peu de geometrie par gabrielduflot
03-12-2009 Enigmes Mathématiques
P2T
Somme par salehseghiri
29-08-2011 Enigmes Mathématiques
P2T
20-07-2010 Enigmes Mathématiques
20-03-2009 Enigmes Mathématiques
P2T
Gâteau 110 par Vasimolo
01-11-2015 Enigmes Mathématiques
01-01-2015 Enigmes Mathématiques
P2T
Café au lait [RESOLU] par Lui-meme
16-03-2013 Enigmes Mathématiques
P2T
21-08-2009 Enigmes Mathématiques

Mots clés des moteurs de recherche

Mot clé (occurences)

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete