Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 02-10-2011 04:51:08

Azdod
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 763
Lieu: In this universe ... !!

Avc les nombres premiers !

Montrez que la suite (4n+1) Avec "n dans N" contient une infinité des nombres premiers.

Bonne chance



Annonces sponsorisées :

"Zero is where everything starts ! Nothing would ever be born if we didn't depart from there"
  • |
  • Répondre

#0 Pub

 #2 - 02-10-2011 08:10:02

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,601E+3

avec les nombres prrmiers !

Vu comme ça, je pense que n=1 est le seul terme qui donne un entier. 5 J'ai loupé quelque chose dans l'énoncé ?

 #3 - 02-10-2011 08:16:36

esereth
Professionnel de Prise2Tete
Enigmes résolues : 49
Messages : 175

Avec les nombres prmiers !

Bonjour,

Le fait de montrer qu'il y a une infinité de nombres premiers de la forme 4k+3 est un exercice classique de spé maths.  C'est bien de changer smile

On va commencer de la même façon qu'Euclide dans sa démonstration de l'infinité de nombres premiers. Et montrer que notre hypothèse est absurde.

Supposons qu'il existe un nombre fini de nombres premiers de la forme 4k+1,
Notons les p1, p2,..., pn et posons N=(2*p1*p2*...*pn)^2+1.
C'est clairement un nombre de la forme 4k+1. C'est aussi clairement un nombre de la forme a^2+1.

De deux choses l'une, ou il est premier, ou possède un facteur premier.
Optons pour la deuxième hypothèse. Notons q ce facteur premier. Ce ne peut pas être 2. Peut-on avoir q de la forme 4k+3 ? 
Dans ce cas nous aurions q=2*m+1 avec m impair.
Comme q divise N, a^2 congru à -1 modulo q donc a^2m congru à (-1)^m = -1 modulo q
Mais 2m=q-1 ce qui permet d'écrire a^(q-1) congru à -1 modulo q
D'autre part, q divise N mais ne divise pas a, le petit théorème de Fermat nous dit donc que
a^(q-1) congru à 1 modulo q.
-1 et 1 ne sont pas congrus modulo un premier impair.
On a donc une contradiction qui nous permet d'affirmer que si N possède un facteur premier, celui-ci est de la forme 4k+1.
Dans ce cas, puisque les facteurs premiers sont en nombre fini, q est l'un des pi.
q divise a, donc a^2, donc N-a^2 qui vaut 1.
On aboutit à une seconde contradiction et on arrive à dire que N ne possède pas de facteur premier.
N serait donc premier, de la forme 4k+1, mais ne ferait pas partie de la liste p1, p2, pn.

L'hypothèse initiale était absurde : Il y a une infinité de nombres premiers de la forme 4k+1

 #4 - 02-10-2011 08:33:08

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Avec les nombrees premiers !

Euh...(4n+1)/n c'est déja pas souvent un entier......

 #5 - 02-10-2011 13:46:05

Azdod
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 763
Lieu: In this universe ... !!

Avec les nombres prmeiers !

Et une magnifique esereth comme d'habitude smile


"Zero is where everything starts ! Nothing would ever be born if we didn't depart from there"

 #6 - 02-10-2011 13:48:04

Azdod
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 763
Lieu: In this universe ... !!

Avec les nombres preiers !

@ gwen and nodgim : La suite demandée est 4n+1 avec n dans N.


"Zero is where everything starts ! Nothing would ever be born if we didn't depart from there"

 #7 - 02-10-2011 14:40:15

Bamby2
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 152

avzc les nombres premiers !

je n'ai pas de preuve formel, mais assez pour me convaincre que c'est vrai big_smile

En effet si il existait un nombre fini de nombre premier de la forme 4n+1 alors il existerait un nombre maximum 4n'+1,

Ce qui signifie qu'il n'existerait qu'un nombre fini de premier jumeaux, or il est conjecturé qu'il en existe un nombre infini, si une preuve existait aussi simple, la conjecture serait fausse ....

donc c'est forcement faux !! -> il en existe un nombre infini  wink

je me planche sur une preuve smile

 #8 - 02-10-2011 15:02:58

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,601E+3

Avec les nombres preemiers !

Maintenant oui, c'est clair... avec l'énoncé réajusté.

Si les 4n+1 ne contiennent pas une infinité de nombres premiers, cela veut dire que les 4n+2 4n+4 et 4n+3 en contiennent une infinité, les 4n+3 donc...les autres étant pairs.

Edit, après, j'ai dit une idiotie...

 #9 - 02-10-2011 16:57:57

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4776

Avec les nomres premiers !

On a le droit d'utiliser le théorème de Dirichlet ?

Vasimolo

 #10 - 02-10-2011 17:34:27

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Avec les nombres premmiers !

Le 1er nombre premier de la liste, 5, élimine 1/5 des nombres susceptibles d'être premier, car 4(1+5k) +1 est divisible par 5.
Même raisonnement pour tous les nb premiers qu'on rencontre dans la liste:
Ce filtre dit qu'il reste (1-1/p1)(1-1/p2)(1-1/p3)...nombres susceptibles d'être premiers. Ce produit ne peut être nul. 
Or tout nombre n'ayant pas été éliminé dans cette liste est premier, car sinon il serait produit de 2 premiers 4k+1=pn*pm mais le plus petit de pn ou pm est <2rac(k)<k, donc le plus petit premier a déja été vu dans la liste, donc le nombre testé aurait été éliminé. Contradiction.

 #11 - 02-10-2011 19:18:05

L00ping007
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2010
Lieu: Paris

vAec les nombres premiers !

Supposons qu'il existe un nombre fini N de nombres p qui sont premiers et valant 1 modulo 4.

Je considère le nouveau nombre M défini ainsi :
[TeX]M=4\left(\prod_{i=1}^Np_i\right)^2+1[/TeX]
avec [latex]P=\prod_{i=1}^Np_i[/latex]

Ce nouveau nombre est bien de la forme 4n+1.
Par hypothèse, il n'est pas premier, car strictement plus grand que [latex]p_N[/latex]. Il a donc au moins 2 diviseurs.

M est clairement premier avec tous les [latex]p_i[/latex].
Les diviseurs de M sont donc tous de la forme 4n+3.

Prenons p=4n+3 un diviseur premier de M.
On peut utiliser le petit théorème de Fermat avec 2P premier avec p :
[TeX](2P)^{p-1}\equiv1[p][/TeX][TeX](2P)^{4n+2}\equiv1[p][/TeX]
Or [latex]M=4P^2+1[/latex], donc :
[TeX](M-1)^{2n+1}\equiv1[p][/TeX]
Mais M est un multiple de p, donc on arrive à :
[TeX]-1\equiv1[p][/TeX]
Impossible car p > 2

On arrive donc à une contradiction, et on en déduit que l'ensemble des nombres premiers de la forme 4n+1 est infini smile




Cette démonstration me fait penser à celle des nombres premiers s'écrivant 4n+3, qui est plus facile.

 #12 - 02-10-2011 22:21:58

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

avec kes nombres premiers !

Soit [latex]a \in \mathbb{N}^*[/latex] et pair.
Soit [latex]p \in \mathbb{P}, \text{ } p|(a^2+1)[/latex]

Alors [latex]a\equiv-1 [p][/latex] donc [latex]a^4 \equiv 1 [p][/latex]. Or [latex]p[/latex] ne divise pas [latex]a[/latex] sinon [latex]a^4\equiv a \equiv 0 [p][/latex].
Donc d'après le petit théorème de Fermat on a : [latex]a^{p-1} \equiv 1 [p][/latex].
Comme [latex]a^2+1[/latex] est impair, tout premier [latex]p[/latex] le divisant est de la forme [latex]4n+1[/latex] ou [latex]4n+3[/latex].
Si [latex]p=4n+3[/latex] alors [latex]p-1=4n+2[/latex] d'où [latex]a^{p-1} \equiv (a^4)^n*a^2 \equiv -1 [p][/latex] soit p=2 donc [latex]p=4n+1[/latex]

Donc [latex]\forall p \in \mathbb{P} \text{ ,} p|(a^2+1)[/latex] est de la forme [latex]4n+1[/latex].

Conclusion il y a une infinité d'entier n tel que [latex]U_n \in \mathbb{P}[/latex].

Quod Erat Demonstrandum big_smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #13 - 03-10-2011 02:47:44

Azdod
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 763
Lieu: In this universe ... !!

avec les nombres prrmiers !

Bravo à tous


"Zero is where everything starts ! Nothing would ever be born if we didn't depart from there"

 #14 - 03-10-2011 11:21:32

rivas
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1105
Lieu: Jacou

Avec les nombres premiesr !

C'est du très très classique ça smile
De la question de cours, je dirai même.
Je note d'ailleurs que récemment, on s'est éloigné un peu des éngimes pour s'orienter vers des mathématiques pures et parfois "scolaires".

Ce n'est pas la peine de retaper du très classique, voici donc une démonstration courte et efficace (pas de moi je précise):
http://forum.prepas.org/viewtopic.php?f … 74#p340684

 #15 - 03-10-2011 12:15:26

scarta
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1473

avec led nombres premiers !

On y va avec un bulldozer smile
1 et 4 sont premiers entre eux : d'après le théorème de la progression arithmétique, il existe donc une infinité de nombre premiers de la forme 4n+1

 #16 - 03-10-2011 18:54:05

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Avec les nombres preimers !

J'attire l'attention du lecteur sur le fait que la démo présentée ci-avant (msg 10) est valable pour n'importe quelle fonction an+b, pourvu que a et b soit premiers entre eux.

 #17 - 03-10-2011 19:01:24

Azdod
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 763
Lieu: In this universe ... !!

avec les nombtes premiers !

@ Rivas : lol
@ Scarta : t'as utilisé un résultat direct ! il vaut mieux demontrer avec les arithmétiques.


"Zero is where everything starts ! Nothing would ever be born if we didn't depart from there"

 #18 - 06-10-2011 17:49:49

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Avec les nombres premierss !

scarta a écrit:

On y va avec un bulldozer smile
1 et 4 sont premiers entre eux : d'après le théorème de la progression arithmétique, il existe donc une infinité de nombre premiers de la forme 4n+1

Je le trouve pas bulldozer du tout ce théorème, facile à comprendre.
En plus, il est extensible à toute expression an+b.

 #19 - 26-02-2012 02:15:16

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

acec les nombres premiers !

Euh attention à ne pas dire de bêtises il faut ajouter deux conditions à cette phrase :

nodgim a écrit:

En plus, il est extensible à toute expression an+b.

[latex]an+b \in \mathbb{P}[/latex] ssi et [latex]PGCD(a;b)=1[/latex]

Shadock smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #20 - 26-02-2012 08:08:30

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

Avec les nombres premiers

Pour PGCD=1 je l'ai dit. En revanche, je ne savais pas qu'il fallait la contrainte  a>b.

 #21 - 26-02-2012 13:51:39

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Avvec les nombres premiers !

Si a<b ça ne fonctionne que de temps en temps. La démo je ne l'ai plus mais si je l'a retrouve wink


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #22 - 26-02-2012 14:45:32

L00ping007
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2010
Lieu: Paris

Avec lees nombres premiers !

Je ne pense la que a>b soit nécessaire.
En effet, an+b = a(n+k) + (b-ak), où k est le quotient de la division eucludienne de b par a.
b-ak est le reste, il est donc strictement inférieur à a.
Et on a juste opéré une translation des nombres, ce qui ne change pas la caractère infini ou non de l'ensemble des nombres premiers de cette forme wink

 #23 - 26-02-2012 17:17:58

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Avec les nombres premier !

La démonstration de ce théorème en entier est difficile et demande des fonctions de variables complexes. J'avais un pdf mais je ne le trouve plus. sad

Par contre il n'est pas difficile de montrer qu'il existe une infinité d'entiers de la forme 4n+3.

Shadock smile


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #24 - 26-02-2012 19:52:51

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3133

avec les nombees premiers !

Qu'est ce qui ne va pas avec la démo dite de la "progression arithmétique" ? Elle m'a l'air plus simple à comprendre.

 #25 - 26-02-2012 20:55:41

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3328

Avec les nombres premires !

Le théorème de la progression arithmétique ou théorème de Lejeune-Dirichlet est :

Si [latex]PGCD(p;q)=1[/latex] alors il existe une infinité de nombre premier de la forme [latex]k*q+p[/latex] avec [latex]k \in \mathbb{N}[/latex]

Scarta connaissant ce théorème n'avait plus qu'à l'appliquer pour [latex]p=1[/latex] et [latex]q=4[/latex].

Mais la démonstration du théorème en lui même est assez compliquée. smile

Shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Si il y a 51 pommes et que vous en prenez 24, combien en avez-vous ?

Sujets similaires

Mots clés des moteurs de recherche

Mot clé (occurences)
Montrer qu il existe une infinite de nombres premiers de la forme 4n+1 (9) — Infinite de nombres premiers 4n+1 (8) — Nombre premier (6) — Infinite de nombre premier 4k-1 (5) — Les nombres premiers (4) — Montrer qu il existe un infinite de nombres premiers de la forme 4n-1 (4) — Infinite de nombres premiers 4k+1 (4) — Montrer qu il existe une infinite de nombres premiers de la forme 4n-1 (4) — Infinite de nombres premiers de la forme 4k+3 (4) — Nombres premiers congrus a 1 modulo 4 (3) — Nombre premier 4n+1 (3) — Il existe une infinite de nombres premiers congru a 1 modelu demonstration (3) — Il existe une infinite d entiers premiers de la forme 4.k+1 (3) — Infinite de nombres premiers de la forme 4k+1 (3) — Les nombres de la forme 4k+3 (3) — Nombres premiers 4n+3 (3) — Infinite de nombre premier 4k+3 (3) — Nombre premier de la forme 4n+1 (2) — Montrer qu il existe une infinite des nombre premies de la forme 4k+1 (2) — Math infinite de nombre de la forme 4n+1 ou 4n-1 (2) — Nombre de fermat infinites des nombres premiers (2) — Il existe une infinite de nombres premiers de la forme 4n+1 (2) — Montrer qu il existe un infinite de nombre premier de la forme 4n+1 congruence (2) — Infinite de nombres premiers de la forme 4k-1 (2) — Une infinite de nombres premiers de la forme 4n+1 (2) — Prouver infinite nombre premiers 4n+1 (2) — Infinite nombres premiers 4k+3 (2) — Nombre premier 4k+1 (2) — Infinite de nombres premiers de la forme 4n+3 demonstration (2) — Demonstration infinite nombres premiers 4n-1 (2) — Montrer infinite de nombres premiers congrus a 3 modulo 4 (2) — Infinite de nombres premiers congrus a 1 mod 4 (2) — Demontrer infinite nombres premier 4n+1 (2) — Il existe une infinite d entiers premiers de la forme 4k+1 (2) — Mathamatiques eucludiennes (2) — Une infinite de nombres premiers exercice (2) — Montrer qu il existe un infinite de nombre premier de la forme 4n+1 (2) — Les nombres premiers de la forme 4k+3 enonce et corrige (2) — Spe maths : nombres premiers de la forme 4n+3 (2) — Infinite nombres premiers congrus a 1 modulo 4 (2) — Montrer qu il existe une infinite de nombres premiers de la forme 4n+3 (2) — 4n+3 nombres premiers (2) — Infinite de premier 4k+1 (2) — Montrer qu il existe une infinite de nombres premiers congrus a 1 mod 4 (2) — Montrer qu il existe une infinite de nombre premier congrus (2) — Montrer qu il existe une infinite de nombre premier congrus a 5 modulo 6 (2) — Une infinite de nombres premiers spe maths (2) — Ensemble des nombres premiers 4n-1 correction (2) — Montrer qu il y a une infinite de nombres premiers de la forme 4k + 1 (2) — Demonstration il existe une infinite d nombres premiers de la forme 4n+1 (2) — Infinite nombre premiet 4n-1 (2) — Enigme nombre premier (2) — Spe maths; montrer qu il existe une infinite de nombres premiers de la forme 4n-1 (2) — Nombre premier 4k+1 4k+3 (2) — (1) — Une infinite de nombre premier spe maths (1) — Exos classiques nombres premiers spe maths (1) — Infinite premiers 4k + 3 n (1) — Demonstration mathematique absurde (1) — An+b infinite de premier (1) — Les nombres premiers p congrus a _1modulo 4 sont ils en nombre fini (1) — Infinite nombres premier forme 4n+1 (1) — Il existe une infinite de premiers congrus a 1 (1) — Nombres premiers 4k+3 (1) — L ensemble des nombres premiers de la forme 4k (1) — Enigme avec les nombres premiers (1) — Enigmes mathematiques nombres premiers (1) — Demonstration nombre d or (1) — Demontrer qu un nombre premier est de la forme 4k+1 ou 4k+3 (1) — Demonstration infinite de nombre premier 4n+1 (1) — Montrer qu il existe une infinite de nombres premiers dans l ensemble 4z + 3 (1) — Infinite des premiers forme 4n 3 spe s (1) — Formes de nombres premiers 4n+1 corrige (1) — Il y a une infinite de nombres de la forme 4k+3 posons n (1) — Reponse enigme nombre premier (1) — Infint 4n+3 (1) — Infinite de nombres premiers 4 k + 3 (1) — Demonstration infinite nombres premiers avec les nombres de fermat (1) — Nombre premier de forme 4k+3 (1) — Nombre premiers de la forme 4k +3 (1) — Infinite de nombres premiers de la forme 4n-1 (1) — Demonstrations infinite nombre premier de la forme 4n+1 (1) — Prouver qu il ya une infinite de nombres premier (1) — Montrer qu il existe une infinite de nombres premiers de la forme (1) — Montrer qu il existe une infinite de nombres premiers de la forme 4n-1 terminale (1) — (1) — Infinite de nombres premiers (1) — Montrer qu il y a une infinite de nombre premiers congrus a 1 modulo 4 (1) — Infinite nombres premiers de la forme 4n+3 (1) — Spe maths nombres premiers de la forme 4n+1 (1) — L univesrs et les nombres premiers (1) — Infinite 4k + 3 (1) — Formes de nombres premiers 4n+1 (1) — Enigmes avec des chiffres (1) — Montrer qu il existe une infinite de nompbres premiers congrus a3 modulo4 (1) — Infinite de nombres premiers de la forme 4n-1 demonstration (1) — Spe maths exercice 4 n+3 est infini montrer ensemble des nombres premiers de la formes (1) — De nombres premiers de la forme 4n +1 spe maths (1) — Preuve infinite de nombres premiers de la forme 4k+3 (1) — Donner cinq nombres premier de la forme 4n-1 (1) — Une infinite de nombres premiers de la forme 4k + 3 (1) — Tore nombre premier (1) — Montrer qu il existe une infinite de premiers 4k-1 (1) — La forme 4n + 1 corrige (1) — Les nombre premie (1) — Demontrer l infinite des nombres premiers de la forme 4n+3 (1) — Exercice spe maths les nombres premiers de la forme 4n+1 (1) — Enigme avec suite de nombre premier (1) — Montrer qu il existe une in nite de nombres premiers congrus a 2 mo- dulo 3. (1) — L ensemble des nombres premiers de la forme 4k-1 est infini (1) — N%c2%b2+congru+1%5b3%5d+th%c3%a9or%c3%a8me+de+fermat (1) — Montrer qu aucun nombre premiers de la forme 4k+3 ne divise m=4n-1 (1) — Montrer que l ensemble des nombres premiers est infini 4k+3 i (1) — An+b contient une infinite de nombres premiers (1) — Nombre premier de la forme 4n+1 ou 4n+3 (1) — Demontrer que tout nombre premier impair est de la forme 4k + 1 (1) — Infinite de nombre premier congru 1 mod 4 (1) — Nombre premier congru a 1 modulo 4 (1) — Infinite de nombre premiers 4k+1n^2+1 (1) — Plus grand nombre premier (1) — Infinite de nombre premier de la forme 4n-1 (1) — 4n+1 et nombre premier (1) — Infinite de nombre premiers de la forme 4n - 1 (1) — L ensemble des entiers premiers de la forme 4n-1 est infini (1) — Exo spe une infinite de nombres premiers (1) — L ensemble des nombres prrmiers de la forme 4k+1 (1) — En d ?eduire qu?il y a une infinit ?e de nombres premiers de la forme 4k + 1 (1) — Infinite des nombres premiees de forme 4n-1 (1) — Spe supposons qu il existe un nombre fini p1 p2 ... pn de nombres premiers de la forme 4k+3 (1) — Il existe une infinite de premier de la forme 4n+1 (1) — Deduire qu un nombre n est pas premier (1) — Infinite de nombre premiers de la forme exercice (1) — L infinite des nombres premiers exercices (1) — Montrer qu il y a une infinite de nombres premiers 4k+1 (1) — Il existe une infinite de nombres premiers de la forme 4n + 1 (1) — infinite de premier 4n+3 preuve par l absurde (1) — Montrer par absurde que l ensemble des nombres premiers congruence 3 (1) — Il existe un nombre fini de nombres premiers de la forme 4k+3 (1) — Nombres premiers congrus a 1 modulo 6 (1) — Montrer qu un nombre premier autre que 2 est de la forme 4k + 1 ou de la forme 4k + 3 (1) — P premier 4k+1 4k+3 (1) — Enonce demontrer qu il existe une infinite de nombres premiers de la forme 4k 3 (1) — Spe maths nombres premiers 4n+1 (1) — Ensemble nombres premiers infini 4k+1 (1) — Infinite 4k+1 premier (1) — Infinite 4k + 3 nombre premier (1) — Tout+nompre+premier+secrit+4k+n (1) — Nombre premier 4n+3 (1) — Jeux avec les nombres premiers (1) — Jeu facteurs premiers (1) — Demontrer que si p est premier alors 8*p*p +1 n est pas premier (1) — Demonstration nombre premier 4k+3 (1) — En deduire que tous les diviseurs premiers de n sont de la forme 4k+1 (1) — 4k+3 : montrer que n=4*p1*p2*...*pn n est divisible par aucun nombre premier de la liste p1 p2... pn (1) — Il existe une infinite de nombres premiers de la forme 4n+3 (1) — Demontrer qu il existe une infinite de nombres premiers 4k-1 (1) — Montrer qu un nombre premier autre que 2 est de la forme 4k+1 (1) — Demontrer linfinite de nombre premier congru a 3 modulo4 (1) — Infinite nombre premier 4k+3 (1) — Demontrer qu il existe un infinite de nombres premiers de la forme 4n-1 (1) — Infinite nombres premiers (1) — Les nombres premies (1) — Infinite de nombres premiers congrus a 3 modulo 4+demonstration+terminale spe (1) — Spe maths nombres premiers forme 4k+3 (1) — Infinite des nombres premiers demonstration de forme 4n+1 (1) — Nombre premiers congrus a 2 modulo 3 (1) — Nombre premier infini montrer corrige 4k+3 4k+1 (1) — Infinite des premiers forme 4n+3 spe s (1) — Demontrer qu il y a un nombre infini de nombres premiers de la forme p=4m+3 (1) — Demontrer 2=1 (1) — Nombres premiers de la forme 4n-1 (1) — Donner cinq nombres premiers de la forme 4n-1 (1) — 1703 nombre premier? (1) — Nombres premiers de la forme 4k+3 (1) — Infinite nombre premier exercice (1) — Infinite de premiers 4k+1 (1) — Deduire une infinite de nombre premier 4k+1 (1) — Etablir n^2 de la forme 4k ou 4k+1 spe maths (1) — Infinite des nombres premiers congrus a 1 modulo 4 (1) — Nbre premier de la forme 4k+1 (1) — Nombre premier 4n+3 infini (1) — Existe une infinite de nombres premiers de la forme 4n+3 (1) — Correction exercice de spe math: entier de la forme 4n+3 (1) — 4k + 1 premiers infinite (1) — Enigme avec des nombre (1) — Il existe un nombre infinie de nombre premier de la forme 4n-1 demonstration (1) — Nombre infini de nombres premiers congru a 1 modulo 4 (1) — Montrerqu il ya une infinite de nombre premiersde la forme (1) — Avec des nombres premiers (1) — Il y a une infinite de nombre premier 4k+3 (1) — (1) — 5 nombres premiers de la forme 4n-1 (1) — Montrer que les diviseurs de n sont de la forme 4k+1 ou 4k+3 (1) — Montrer qu il y a une infinite de nombres premiers congrus a 1 modulo 4 (1) — Il existe une infinite de nombres premiers de la forme 4n 1 (1) — Nombre premier 4k+1 ou 4k+3 (1) — Est ce que il y a une infinite de nombre premiers de la forme 3+4z (1) — 5 nombre premier de la forme 4n-1 (1) — Enigme avec un nombre premier (1) — Exercice spe math demonstration de l infinitude des nombres premiers (1) — Infinite de 4n +1 premier (1) — Infinites de nombre premier de la forme (1) — Il existe une infinite de nombres premiers de la forme 4n-1 par l absurde (1) — Infinite de nombre premiers de la forme 4k+1 (1) — Montrer que si p1p2...pn sont n nombres premiers alors aucun ne divise k=p1*p2*...*pn+1 (1) — Nombre premier 4n-1 (1) — En deduire qu il y a une infinite de nombres premiers de la forme 4n+3 (1) — Enigmes avec des nombres (1) — Exercice nombres premier (1) — Nombre premier 4n+1 ou 4n+3 (1) — Demo nombre premier (1) — Il existe une infinite de nombre premiers de la forme 4k 3 (1) — Infinite de nombres premiers 4n+1 demonstration (1) — Il xiste une infinite de nombres premiers de forme 4n+1 (1) — Enigmes avec nombre premiers (1) — Il existe une infinite de nombres premiers de la forme 4n +1 (1) — 4n+1 premier (1) — Nombre premier 4k +1 4k + 3 (1) — Montrer qu il existe une infinite de nombres premiers sous la forme 4n+3 (1) — Math spe : 5 nombre de la forme 4n-1 (1) — Il existe une infinite de nombres premier de la forme 4k+3 (1) — Demontrer qu il existe une infinites de nombres premiers forme 4n+1 (1) — Demo 4k+3 infinite premier (1) — Exercice spe math infinite nombre premier (1) — Egnime avec un chiffre premier (1) — Montrer existe une infinite de nombre premier 4 m+1 (1) — Infinite des premiers 4n 3 spe s (1) — Supposons qu il existe un nombre fini p1p2 de nombres premiers de la forme 4k+3 (1) — (1) — Exercice math spe nombre premier messages secrets (1) — Nombres premiers 4n-1 (1) — Jeu sur les nombres premiers (1) — 4k-1 est premier (1) — Congruences divisibilite par 81 (1) — P nombre premier 4k+1 ou 4k+3 (1) — Une infinite de nombre premiers exo spe maths (1) — Montrer que tout nombre premier impair est de la forme 4k 1 (1) — Infinite premier 4 (1) — Exos maths nombres premiers (1) — (1) — Infinite de nombres premier de la forme 4k+3 exercice (1) — Infinite de nbres premiers de la forme 4n-1 (1) — Exo spe maths une infinite de nombres premiers (1) — Une infinite de nombres premiers sous la forme 4n+1 (1) — Infinite/nombre premiers 4k+1 (1) — Montrer qu il existe une infinite de nombre premier sous la forme de 4n+3 (1) — Infinite premiers 4n+3 (1) — Spe maths infinite de nombres premiers 4n+1 (1) — Spe math nombre premier (1) — Montrer qu il existe une infinite de nombres premiers de la fomr 4k+3 (1) — Demontrer que les nombres premiers de la forme 4k+3 est infini (1) — Ts maths il existe une infinite de nombres premiers congrus a 3 modulo 4 (1) — Existe t il une infinite. nombres premiers p de la forme p=4k-1 (1) — 4n+3 demonstration nombre infini de nombre premier (1) — Premier (1) — Infinite premiers forme 4n+3 (1) — Montrer qu il existe une infinite de nombre premier congru a 1 modulo 4 (1) — Devinette chiffres impairs en progression arithmetique (1) — L ensemble des entiers premiers de la forme 4n-1 est infini(pdf) (1) — Infinite de nombre premier fermat (1) — Devinette avec des nombre (1) — On souhaite montrer qu il existe une infinite de nombres premiers de la forme 4k+1 (1) — Ensemble des nombres premiers infini exercice (1) — Corrige infibite de nombres premiers n=4k+3 (1) — Correction une infinite de nombres premiers (1) — Supposons qu il existe un plus grand nombre premier p spe math (1) — Nombre infini de nombres premiersde la forme 4m+3 (1) — Demo rapide infinite nombre premier (1) — Demontrer l infinite des nombres premiers de la forme 4k+3 (1) — Jeux nombres premiers (1) — Arithmetique reste de la division eucludienne (1) — Etablir que n^2 secrit sous la forme 4k ou 4k+1 (1) — Existe une infinite de nombres premiers de la forme 4n + 3 (1) — Il y a une infinite de nombre premier congru a 1 modulo 4 (1) — Demontrer qu il existe une infinite de nombres premiers de la forme 4n+1 (1) — Demontrer qu il existe une infinite de nombre premier de la forme 4k-1 (1) — Infinite de (4k-1) (1) — Montrer qu il existe une infinite de nombres premiers de la forme 4n + 1 (1) — Montrer que l?ensemble des nombres premiers de la forme 4n 3 (ou 4n?1) sont en nombre infini. (1) — Demontrer l infinite de nombres premiers de la forme 4k+1 (1) — Prem 4n+1 (1) — Enigmes avec le nombre d or (1) — Ensembles de nombres premiers de la forme 4k+1 (1) — Nombres premiers de la forme 4k+1 (1) — 4n-1 infinite premiers (1) — 4n+1 premier fini (1) — Nombres premiers congrus a 1 (1) — Nombres premiers exercices (1) — Ensemble des premiers de la forme 4k+1 (1) — En deduire que l ensemble des nombre premier de la forme 4k-1est infini (1) — 4n+3 premier infinie (1) — Montrer quil existe une infinite de nombre premier 4k+1 (1) — Il existe une infinite de nombres premiers de la forme 6n+1 (1) — Il existe un nombre infini de nombres premiers de la forme 4n+3 (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete