Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 28-06-2009 23:44:31

dhrm77
L'exilé
Enigmes résolues : 49
Messages : 2989
Lieu: Fanning Island-?-Lac Tele,Mali

Puissances de

Donnez les 10, 25 ou 100 premiers élements de la série de nombres qui ne peuvent pas être obtenus en calculant la moyenne d'au plus 4 fois chaque puissance de 5.

Exemple:
Prenons les puissances de 5 suivantes:
1, 25, 625.
faisons la moyenne de 1, 25, 25, 25, 25 et 625 : 726/6 = 121.
121 est faisable, il ne fait donc pas partie de la série.



Annonces sponsorisées :

Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt
  • |
  • Répondre

#0 Pub

 #2 - 01-07-2009 12:09:20

EfCeBa
Administrateur
Enigmes résolues : ∞+1
Messages : 22×32×173

Puissancse de 5

Toujours en adaptant ça : http://www.prise2tete.fr/forum/viewtopi … 187#p34467

Code:

// toutes les conditions <5
a = (i0+i1*5+i2*25+i3*125+i4*625+i5*3125+i6*15625+i7*78125+i8*390625+i9*1953125)/(i0+i1+i2+i3+i4+i5+i6+i7+i8+i9)

16,22,28,46,56,58,68,74,76,80,106,108,110,118,128,136,138,
140,146,152,168,198,202,206,208,230,249,256,258,262,263,
268,274,276,278,280,284,286,288,290,292,294,296,298,302,
318,323,324,326,336,338,340,346,352,354,362,366,368,370,
376,380,386,400,406,418,448,452,456,458,462,466,508,512,
518,524,526,530,536,540,550,578,584,586,588,590,596,598,
602,604,612,622,628,636,638,640,646,652,664,666,674,676,
680,688,690,700,706,708,712,716,730,752,758,760,764,766,
778,796,836,838,840,846,852,886,898,902,914,916,934,964,
968,974,976,978,982,984,986,988,990

 #3 - 02-07-2009 10:53:51

evariste
Habitué de Prise2Tete
Enigmes résolues : 47
Messages : 27

Puuissances de 5

16, 22, 28, 46, 56, 58, 68, 74, 76, 80
106, 108, 110, 118, 128, 136, 138, 140, 146, 152,
168, 198, 202, 206, 208....

 #4 - 02-07-2009 15:27:45

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

puissznces de 5

Il existe une bijection triviale entre les entiers naturels et les "sommes d'au plus 4 fois chaque puissance de 5" : l'écriture en base 5 d'un entier.

Edit : Je viens de m'apercevoir que j'avais fait un copié-collié trop long je viens de rectifier.

De plus la "moyene" s'obtient alors en divisant l'entier représenté par la somme des valeurs des chiffres que sa représentation en base 5 nécessite.

Enfin on sait qu'on nombre n représenté en base 5 nécessite [latex] \frac{n} {\lfloor\log_5{n}\rfloor+1} [/latex] chiffres.
Donc à partir d'un entier n, les "moyennes" ne peuvent définir que des entiers supérieurs ou égaux à [latex] \frac{n} {4*\lfloor\log_5{n}\rfloor+1} [/latex].

J'ai donc fait un programme qui calcul ces moyennes pour tous les entiers jusqu'a un entier max donné.
Tous les nombres entiers inférieurs à [latex] \frac{max} {4*\lfloor\log_5{max}\rfloor+1} [/latex] absents de la liste de ces moyennes calculées sont ainsi des entiers de la série a trouver.

10 premiers
16, 22, 28, 46, 56, 58, 68, 74, 76, 80,
25 premiers
106, 108, 110, 118, 128, 136, 138, 140, 146, 152, 168, 198, 202, 206, 208,
et plus ....
230, 249, 256, 258, 262 263, 268, 274, 276, 278, 280, 284, 286, 288, 290, 292, 294, 296, 298, 302, 318, 323, 324, 326, 336, 338, 340, 346, 352, 354, 362, 366, 368, 370, 376, 380, 386, 400, 406, 418, 448, 452, 456, 458, 462, 466, 508, 512, 518, 524, 526, 530, 536, 540, 550, 578, 584, 586, 588, 590, 596, 598, 602, 604, 612, 622, 628, 636, 638, 640, 646, 652, 664, 666, 674, 676, 680, 688, 690, 700, 706, 708, 712, 716, 730, 752, 758, 760, 764, 766, 778, 796, 836, 838, 840, 846, 852, 886, 898, 902, 914, 916, 934, 964, 968, 974, 976, 978, 982, 984, 986, 988, 990,  (en fait j'en ai calculé + 1000 :-p)

ça marche exactement pareil en base 4 et 3 big_smile

 #5 - 02-07-2009 15:39:41

EfCeBa
Administrateur
Enigmes résolues : ∞+1
Messages : 22×32×173

puiqsances de 5

Moi la bijection je l'ai remarquée en allant voir l'encyclopédie des suites à partir de mes résultats. Mais je la trouve pas triviale, une démo ?

 #6 - 03-07-2009 11:23:04

Nicouj
Professionnel de Prise2Tete
Enigmes résolues : 27
Messages : 330

puissancrs de 5

Héhé comme je baigne dans les bases peut être qu'effectivement ça m'a plus facilement sauté aux yeux :-p.

En fait, d'une part il y a une premiere bijection entre les suites finies de chiffres d'une base et l'ensemble des entiers naturels.
Celle-là nous l'acceptons tous en l'utilisant dans la vie de tous les jours en base 10 par ex ou bien à travers nos ordinateurs qui utilisent d'autres bases comme 2, 8 ou 16. Malgré tout si on enleve ou rajoute un chiffre (caractere) sans changer la base, ce n'est plus une bijection.

D'autre part l'énonce parle de sommes "d'au plus 4 fois chaque puissance de 5".
Les suites finies de chiffres d'une base sont en fait une représentation condensée de ces sommes. On écrit les coefficients de chaque puissance (chiffre entre 0 et la base moins un) et on ordonne ces coefficient par les valeurs des puissances.

Je me suis pas foulé sur les explications en espérant que ça suffise mais au besoin je peux faire un effort supplémentaire ^^.

Je vous ajoute mon code Scheme pour calculer tout ça

Code:

;fonction qui crée la liste des entiers entre un et n
(define (iota n)
  (local [(define (iter k)
    (if (> k n) 
      empty
      (cons k (iter (+ k 1)))))]
    (iter 1)))

;calcule la somme des chiffres de n en base b
(define (sum_dig_base b n)
  (if (<= n 0) 
      0
      (+ (modulo n b) (sum_dig_base b (quotient n b)))))

;calcule un minorant de la moyenne mininum calculable pour un entier n et une base b
(define (min_moyenne b n)
  (quotient n (* (- b 1) (+ 1 (floor (/ (log n) (log b)))))))

;l'entier max que l'on va décomposer
(define max 20000)
;la base utilisée
(define base 3)

;le plus grand nombre de la série que l'on pourra chercher suivant max et base
(define min_moy (min_moyenne base max))

;tous les entiers que je vais convertir en moyenne
(define entiers (iota max))

;je convertis ces entiers en moyenne
(define moy (map / entiers (map (lambda (x) (sum_dig_base base x)) entiers)))

;j'enleve la liste des moyennes à la liste des entiers possibles
(define res (filter (lambda (x) (not (member x moy))) (iota min_moy)))

;affichage du résultat 
res

 #7 - 03-07-2009 15:02:57

dhrm77
L'exilé
Enigmes résolues : 49
Messages : 2989
Lieu: Fanning Island-?-Lac Tele,Mali

Puissancs de 5

Félicitations à EfCeBa, evariste et Nicouj pour avoir trouvé la bonne réponse.
Et surtout à Nicouj pour avoir trouvé que "la moyenne s'obtient en divisant l'entier représenté par la somme des valeurs des chiffres que sa représentation en base 5 nécessite" ci-dessus.
En d'autres mots, la série des nombres qui ne peuvent pas être obtenus en calculant la moyenne d'au plus 4 fois chaque puissance de 5 est la même que la série des nombres qui ne peuvent pas être obtenus en divisant un nombre par la somme de ses chiffres en base 5.
Cette série se trouve sur L'Encyclopédie en ligne des suites de nombres entiers sous le numero: A058901
Ce qui m'a donné l'idée de faire cette énigme est que Brian Kell donne l'équivalent en base 2 "these are the natural numbers that cannot be written as the arithmetic mean of distinct powers of 2" a propos des Inconsummate numbers in base 2. J'ai simplement étendu le principe pour les autres bases.


Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt
 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 19ème, en quelle position êtes-vous ?

Sujets similaires

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete