Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #26 - 19-12-2015 00:41:55

w9Lyl6n
Professionnel de Prise2Tete
Enigmes résolues : 26
Messages : 220

Gâeau 114

http://www.prise2tete.fr/upload/w9Lyl6n-decoupe_rectangle_diff.png

Si on veut que les formes soient semblables on a comme contraintes :
. [latex]a_{n+1}\ =\ k\ a_n [/latex] où [latex]k[/latex] est le coefficient de réduction [latex]k\in [0,1] [/latex]
. [latex]a\ =\sum\limits_{i=0}^{n/2} a_{2i} [/latex]
. [latex]b\ =\sum\limits_{i=0}^{n/2-1} a_{2i+1}  [/latex]
(j'omets deux contraintes sur les grands cotés parce qu'elles sont liés aux contraintes sur les marches de l’escalier par des sommes simples)

Il s'agit de trouver un [latex]n[/latex] et un [latex]k[/latex] qui conviennent pour [latex]a[/latex] et [latex]b[/latex] fixés [latex]a > b[/latex].
Il suit immédiatement
. [latex]a_n=\ k^na_0 [/latex]
. [latex]a\ =\ \frac{1-k^{n+2}}{1-k^2}a_0 [/latex]
. [latex]b\ =\ \frac{k-k^{n+1}}{1-k^2}a_0 [/latex]
en éliminant [latex]a_0[/latex]  on obtient un polynôme en [latex]k[/latex] de degré [latex]n[/latex] qu'il suffit d'annuler pour que ça marche :
[TeX]\boxed{f(k)\ =\ bk^{n+2}-ak^{n+1}+ak-b}[/TeX]
[TeX]f(0)=-b [/TeX]
[TeX]f(1)=0 [/TeX]
La dérivé en 1 est :
[TeX]f'(1) = (n+2)b-(n+1)a+a \\ = 2b - n(a-b)[/TeX]
donc pour [latex]\boxed{n > \frac{2b}{a-b}}[/latex] on a [latex]f'(1) < 0[/latex]
Ce qui nous garantis l’existence de valeur positive de [latex]f(k)[/latex] au voisinage de 1, puis l’existence d'au moins une racine [latex]k_0[/latex] dans [latex]]0,1[[/latex] en appliquant le théorème des valeurs intermédiaires.

Reste le cas du carré [latex]a=b[/latex], la méthode ne marche plus (on converge vers une diagonale, en effet [latex]a=\frac{b}{k}+a_n > b[/latex] on se rapproche de l'égalité si [latex]k[/latex] tend vers 1, et [latex]n[/latex] vers l'infinie pour annuler [latex]a_n[/latex]). Ma solution précédente avec une infinité de segment peut être utilisée en consolation smile

#0 Pub

 #27 - 19-12-2015 05:41:04

portugal
Professionnel de Prise2Tete
Enigmes résolues : 22
Messages : 374

gâteay 114

Je n'avais pas considéré la possibilité d'une tatin ce qui explique peut être ma mauvaise réponse.

Dans ce cas je propose que tout les rectangles fonctionnent par homothetie  de rapport 0 entre un point du rectangle et son complémentaire.. 

Ca va plaire à ceux qui ont débattu sur le 113...

 #28 - 19-12-2015 09:32:28

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

GGâteau 114

@Mathieu : c'est ça . Pour être complet il faudrait expliquer pourquoi ce n'est pas possible avec un gâteau carré .
@Portugal : on cherche plutôt une similitude indirecte .

Vasimolo

 #29 - 19-12-2015 10:07:37

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 200

âteau 114

salut.

je ne comprend car #12  j'ai une similitude avec 2 rectangles quand L>2l

                             #24 j'ai une similitude indirecte avec 2 hexagones concaves.
que j'ai même généralisée avec des polygones pairs concaves, quand L<2l

que doit-on trouver?  ta solution avec ton rapport de similitude?
Faute de réponses , je laisse tomber.

 #30 - 19-12-2015 10:08:51

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,474E+3

Gâteau 1114

J'en trouve un de ce genre-là...

Par contre, je n'ai pas résolu l'équation, mais par dichotomie, x ressemble fort à la racine du nombre d'or. 1,27202... =racine (1,618...)
http://www.prise2tete.fr/upload/gwen27-g114-1.PNG

 #31 - 19-12-2015 10:32:50

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

Gâteau 1114

@Une coudée : je ne vois pas comment tu résous le problème dans tous les cas : si tu pouvais faire une petite synthèse ( sinon laisse tomber smile )

@Gwen : tu n'as pas tout à fait le bon angle d'attaque ( mais tu n'es pas loin ) .

Vasimolo

 #32 - 19-12-2015 10:40:33

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 200

Gâtau 114

il me semble avoir été clair .j'ai argumenté mathématiquement. je laisse donc tomber la patisserie.
i

 #33 - 19-12-2015 10:48:29

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

Gâeau 114

@Unecoudée : tu fais comme tu le sens , je n'ai simplement pas compris tes arguments smile

Vasimolo

 #34 - 19-12-2015 21:01:08

Fred11
Amateur de Prise2Tete
Enigmes résolues : 47
Messages : 1

âteau 114

Si on a un gâteau qui fait 15 par 6, on fait une part de 12 par 6 et une autre part de 6 par 3 (50% de la première part).
En les assemblant, on a un gâteau rectangulaire de 15 (12+3) par 6.

 #35 - 20-12-2015 11:32:34

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 2955

Gâteaau 114

On découpe le rectangle en 1 (partie) réduite et 1 (partie) résiduelle.
La réduite ne peut être une enclave du rectangle. Elle occupe donc une partie du périmètre du rectangle.

Elle ne peut occuper un coté long en entier, sinon elle serait aussi longue que la résiduelle. Elle ne peut donc occuper que soit une partie d'un coté, soit une partie de 2 cotés consécutifs, soit la totalité du coté court et une partie de chaque coté long.

La réduite ne peut être un convexe sur un seul coté ou dans un seul angle du rectangle. Car ce convexe crée du concave dans la résiduellle. On ne peut pas reproduire ce concave dans la réduite pour tenter de le compenser, car alors on créerait un convexe relativement plus petit dans la résiduelle, qu'il faudrait à nouveau reproduire dans la réduite, etc...

La réduite doit donc occuper 2 angles du rectangle. Le coté court du rectangle ne peut être que sa longueur. La réduite est donc une copie de la résiduelle tournée à 90°. On en arrive donc à la découpe droite parallèle au coté court du rectangle. Si on découpe autrement qu'en ligne droite, cette découpe se trouve sur la longueur de la réduite, mais sur la largeur de la résiduelle, ce qui donnerait 2 formes différentes.

Au final, il n'y a que la solution de découpe en 2 rectangles, quand on peut le faire.

 #36 - 20-12-2015 13:30:27

Clydevil
Expert de Prise2Tete
Enigmes résolues : 29
Messages : 808
Lieu: Seahaven island

Gâteeau 114

Hello

Je dirais n'importe lesquels:

http://www.prise2tete.fr/upload/Clydevil-SoluceRect2SplitSimilar.jpeg

X et Y sont fixés, A est un paramètre libre (a s'en déduit). A priori il suffit de choisir A pour que les deux escaliers convergent dans le rectangle et qu'on puisse tracer par exemple une droite entre ces deux foyers pour achever la pièce. (J'ai la flemme de calculer comment ça converge, mais comme tu poses la question et qu'il me semblerait très difficile de démontrer une réponse autre que "c'est toujours faisable" j'en conclus qu'on peut trouver un A qui convient :p)


Petite correction:
Contrairement a ce que j'ai dit, on ne peut pas bêtement finir par un segment entre les 2 foyers, donc il faut finir avec les deux foyers confondus. Donc faut faire le calcul. Je le ferais asap.

Calculs:
Il semblerait que quelque soit la valeur choisie de A les deux escaliers convergent miraculeusement vers le même point. Donc ça marche toujours.

 #37 - 20-12-2015 18:23:34

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

gâtezu 114

@Fred : oui et il y en a beaucoup d'autres .
@Nodgim : si , ça existe mais les parts sont indirectement semblables ( comme dans un miroir ) .
@Clydevil : il y a beaucoup de paramètres dans tes calculs mais ça semble marcher ( essaie plutôt de prendre le problème dans l'autre sens en construisant le rectangle à partir du découpage ) .

Je pensais que le problème était très facile mais apparemment il surtout facile de s'y perdre . La solution que j'ai est constituée de deux parts en escalier comme sur le dessin de présentation mais avec des marches de tailles différentes .

Bon courage à ceux qui cherchent encore smile

Vasimolo

 #38 - 20-12-2015 19:43:12

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

Gteau 114

@Unecoudée : Je ne fais pas beaucoup d'effort ( je viens seulement de découvrir que tu avais édité ton message #24 ) . J'ai un peu de mal à voir à quel moment tu récupères les quasi-carrés .

Vasimolo

 #39 - 21-12-2015 09:33:34

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 200

Gâteu 114

bonjour.

et j'ajouterai qu'avec ce cas de figure , le rapport limite est atteint avec k=0.6180339887.. l'inverse du nombre d'or ; mais dans ce cas l'escalier est infini , les dernières marches n'étant plus visible .

un autre exemple pour obtenir un gâteau proche d'un carré
avec un rapport k = 0.95 donc proche de 1
le rectangle mesure 4.115518.. x 3.27949..

j'obtiens deux polygones à 10 côtés , donc 2 escaliers de 4 marches.

le plus petit possède les côtés suivant:
avec a = 3.27949..
[TeX]a , ak , k , k^2 , k^3 , k^4 , k^5 , k^6 , k^7 , k^8[/TeX]
le plus grand possède les côtés suivant:
[TeX]\frac{a}{k} , a , 1 ,  k , k^2 , k^3 , k^4 , k^5 , k^6 , k^7 [/TeX]
leur rapport de similitude est bien k = 0.95

avec un rapport k=0.9999999.. on est quasi carré mais non carré.

 #40 - 21-12-2015 12:03:49

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

gâteai 114

Ce que tu appelles le rapport limite c'est k=largeur/longueur ?

Vasimolo

 #41 - 21-12-2015 12:24:07

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 200

gâteay 114

avec 1/k = L/l = nombre d'or , l'escalier est infini et c'est le seul cas , à mon humble avis.

par contre je n'ai pas eu la réponse à mon poste 12 pour un gâteau long.
qui respecte aussi l'hypothèse de départ qui demande une forme indéterminée de part de gâteau. donc ça fonctionne pour tout rapport 0.6180339..< k=l/L <1   pour les parts en escalier

et 2<k  pour les parts rectangulaires

 #42 - 21-12-2015 18:36:59

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

Gâtea 114

Même si pas mal de solutions ont été données , j'ajoute la mienne car le problème n'était en fait pas évident du tout ( il a laissé sur place pas mal d'habitués ) .

On ne se préoccupe pas de la taille du gâteau , on regarde simplement le rapport L/l ( longueur/largeur ) et on choisit un nombre de marches n tel que (n+1)/n < L/l .

On réalise alors un escalier de la façon suivante :

http://www.prise2tete.fr/upload/Vasimolo-solution114.png

Ici il y a n=3 marches ( les nombres sont des exposants ).

Si on fait varier x entre 1 et l'infini le rapport L/l prend toutes les valeurs entre (n+1)/n et l'infini . On choisit alors un x qui réalise le L/l voulu et il n'y a plus qu'à mettre le gâteau à la bonne taille . Il reste à voir pourquoi le carré ne convient pas smile

Merci à tout ceux qui me font le plaisir de s’intéresser à mes petites énigmes pas toujours très claires en supportant au passage mes mouvements d’humeur smile 

Vasimolo

 #43 - 22-12-2015 10:29:49

fix33
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1198
Lieu: Devant un clavier depuis 1748

Gââteau 114

Bien joué les gars !
Je suis allé trop vite en retournant la part dans ma tête (au risque de me vriller les neurones !) smile


Je ne vien sur se site que pour faire croir que je suis treise intélligens.

 #44 - 22-12-2015 12:42:04

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 2955

Gteau 114

Limpide le dessin de Vasimolo !

 #45 - 22-12-2015 15:52:08

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2714
Lieu: Luxembourg

Gâteua 114

"Yapluka" le découper, ce gâteau. Question probablement bête: le trait de coupe est-il fini ou infini ?

 #46 - 22-12-2015 18:02:19

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

gâtezu 114

Il est clairement fini mais a-t-il une limite quand le rectangle tend vers le carré ?

Formulation plus claire du problème : quelle est la longueur limite de la coupe quand la largeur du rectangle tend vers sa longueur donnée ?

Vasimolo

 #47 - 22-12-2015 18:18:13

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 2955

Gâteauu 114

Il est clair que la longueur de la coupe ne peut être supérieure au demi périmètre du rectangle.

 #48 - 22-12-2015 18:31:32

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 2714
Lieu: Luxembourg

Gâtea 114

C'est vrai, donc question effectivement bête. lol

 #49 - 22-12-2015 19:23:38

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 2955

Gâteu 114

unecoudée a écrit:

avec un rapport k=0.9999999.. on est quasi carré mais non carré.

Si, on est carré, puisque 0,999...=1
Mais dans ce cas, on sort des contraintes de l'énoncé qui exige des figures de taille différente.

 #50 - 23-12-2015 11:51:46

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 4734

gâtezu 114

Pour répondre à la question que je posais au message #46 , la coupe limite tend vers le demi-périmètre du rectangle quand celui-ci s'approche du carré . En effet le "1" de mon dessin devient alors négligeable devant les côtés du gâteau .

Vasimolo

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Pim, Pam et ?

Sujets similaires

Sujet Date Forum
P2T
Gâteau 49 par Vasimolo
13-12-2011 Enigmes Mathématiques
P2T
Gâteau 32 par Vasimolo
05-09-2010 Enigmes Mathématiques
P2T
Gâteau 14 par Vasimolo
14-07-2010 Enigmes Mathématiques
P2T
Gâteau 96 par Vasimolo
06-04-2015 Enigmes Mathématiques
P2T
Gâteau 59 par Vasimolo
05-05-2013 Enigmes Mathématiques
P2T
Gâteau 113 par Vasimolo
12-12-2015 Enigmes Mathématiques
P2T
Gâteau 28 par Vasimolo
23-08-2010 Enigmes Mathématiques
P2T
Gâteau 109 par Vasimolo
25-10-2015 Enigmes Mathématiques
P2T
Gâteau 39 par Vasimolo
29-05-2011 Enigmes Mathématiques
P2T
Gâteau 20 par Vasimolo
03-08-2010 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete